Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

Zero of (7 + 4x) is ___(1) \(\frac{4}{7}\)(2) \(\frac{-7}{4}\)(3) 7(4) 4

Answer»

(2) \(\frac{-7}{4}\)

502.

Raman’s age is three times the sum of the ages of his two sons. After 5 years his age will be twice the sum of the ages of his two sons. Find the age of Raman.

Answer»

Let Raman’s age = x 

Let the sum of his two sons age = y 

Now x = 3y ⇒ x – 3y = 0 … (1) 

After 5 years, 

Step (1) 

x + 5 = 2(y + 10) 

x + 5 = 2y + 20 

x – 2y = 20 – 5 

x – 2y = 15 

Step (2) 

From equation (1) x = 3y 

Step (3) 

Substitute x = 3y in (2) 

3y – 2y = 15

y = 15 

Step (4) 

Substitute y = 15 in (1) 

x = 3y = 3 x 15 

x = 45 

∴ Raman’s age is 45 years.

503.

If (x + 5) and (x – 3) are the factors of ax2 + bx + c, then values of a, b and c are (1) 1, 2, 3 (2) 1, 2, 15 (3) 1, 2, -15 (4) 1, -2, 15

Answer»

(3) 1, 2, -15 

p(-5) = a (-52) + b (-5) + c = 25a – 5b + c = 0 ... (1)

p(3) = a (32) + bc + 3 + c = 9 + 3b + c = 0 … (2) 

25a – 5b = 9a + 3b 

25a – 9a = 3b + 5b 

16a = 8 b 

\(\frac{a}{b}=\frac{8}{16}=\frac{1}{2}\)

Substitute a = 1, b = 2 in (1) 

25(1) – 5 (2) = -c 

25 – 10 = 15 = – c 

c = -15

504.

If x51 + 51 is divided by x + 1, then the remainder is(1) 0(2) 1 (3) 49 (4) 50

Answer»

(4) 50 

P(-1) = (-1)51 + 51 = -1 + 51 = 50

505.

The zero of the polynomial 2x + 5 is(1) \(\frac{5}{2}\)(2) \(-\frac{5}{2}\)(3) \(\frac{2}{5}\)(4) \(-\frac{2}{5}\)

Answer»

(2) \(-\frac{5}{2}\)

506.

The root of the polynomial equation 3x – 1 = 0 is(1) x = \(-\frac{1}{3}\)(2) x = \(\frac{1}{3}\)(3) x = 1(4) x = 3

Answer»

(2) x = \(\frac{1}{3}\)

x = \(\frac{1}{3}\) gives 3(\(\frac{1}{3}\)) - 1 = 1 - 1 = 0

507.

The type of the polynomial 4 – 3x3 is (1) constant polynomial (2) linear polynomial (3) quadratic polynomial (4) cubic polynomial.

Answer»

(4) cubic polynomial. 

Polynomial of degree 3 is called cubic.

508.

Cubic polynomial may have a maximum of (1) 1 (2) 2 (3) 3 (4) 4

Answer»

Answer is (3) 3

509.

The zero of the polynomial 2x – 5 is(1) \(\frac{5}{2}\)(2) \(-\frac{5}{2}\)(3) \(\frac{2}{5}\)(4) \(-\frac{2}{5}\)

Answer»

(1) \(\frac{5}{2}\)

Zero is given by 2x - 5 = 0 

x = \(\frac{5}{2}\)

510.

The polynomial 4x2 + 2x – 2 is a (1) linear polynomial (2) quadratic polynomial (3) cubic polynomial (4) constant polynomial

Answer»

(2) quadratic polynomial

A polynomial is quadratic of its highest power of x is 2

511.

The polynomial 3x – 2 is a (1) linear polynomial (2) quadratic polynomial (3) cubic polynomial (4) constant polynomial

Answer»

(1) linear polynomial

A polynomial is linear if its degree is 1

512.

Which of the following is a linear equation? (1) x + \(\frac{1}{x}\) = 2 x (2) x(x – 1) = 2 (3) 3x + 5 = \(\frac{2}{3}\)(4) x3 – x = 5

Answer»

(3) 3x + 5 = \(\frac{2}{3}\)

x + \(\frac{1}{x}\) = 2 ⇒ x2 – 2x + 1 = 0; x(x – 1) = 2 ⇒ x2 - x – 2 = 0

513.

Find the value of m from the equation 2x + 3y = m. If its one solution is x = 2 and y = – 2. (1) 2 (2) -2 (3) 10 (4) 0

Answer»

(2) -2 

2x + 3y = m, x = 2, y = – 2

m = 2(2) + 3(-2) 

= 4 – 6 = -2

514.

Which of the following is a solution of the equation 2x – y = 6? (1) (2, 4) (2) (4, 2) (3) (3, -1)(4) (0, 6)

Answer»

(2) (4, 2) 

2x – y = 6 

2(4) – 2 = 8 – 2 = 6 = RHS

515.

If (2, 3) is a solution of linear equation 2x + 3y = k then, the value of k is (1) 12 (2) 6 (3) 0 (4) 13

Answer»

(4) 13

2x + 3y = k 

2(2) + 3(3) = 4 + 9 = 13

516.

Which condition does not satisfy the linear equation ax + by + c = 0 (1) a ≠ 0, b = 0 (2) a = 0, b ≠ 0 (3) a = 0, b = 0, c ≠ 0 (4) a ≠ 0, b ≠ 0

Answer»

(3) a = 0, b = 0, c ≠ 0 

a = 0, b = 0, c ≠ 0 ⇒ (0)x + (0) y + c = 0 

False

517.

The value of k for which the pair of linear equations 4x + 6y – 1 = 0 and 2x + ky – 7 = 0 represents parallel lines is (1) k = 3 (2) k = 2 (3) k = 4 (4) k = -3

Answer»

(1) k = 3

4x + 6y = 1 

6y = -4x + 1 

y = \(\frac{-4}{6}x+\frac{1}{6}\) … (1) 

2x + ky – 7 = 0 

ky = -2x + 7 

y = \(\frac{-2}{k}x+\frac{7}{k}\) ... (2) 

Since the lines (1) and (2) parallel m1 = m2

\(\frac{-4}{6}=\frac{-2}{k}\)

k = -2 x \(\frac{-6}{4}\) = 3

518.

Which of the following is not a linear equation in two variable (1) ax + by + c = 0 (2) 0x + 0y + c = 0 (3) 0x + by + c = 0 (4) ax + 0y + c = 0

Answer»

(2) 0x + 0y + c = 0 

a and b both can not be zero

519.

Thirteen guests have participated in a dinner. The number of handshakes that happened in the dinner is: (a) 715 (b) 78 (c) 286 (d) 13 (b) 78

Answer»

(b) 78

To handshakes, we need two guests. 

Number of selecting 2 guests from 13 is 13C2

\(\frac{13\times12}{2\times1}\) = 78

520.

Subtract:-2(xy)2 (y3 + 7x2y + 5) from 5y2 (x2y3 – 2x4y + 10x2)

Answer»

5y2 (x2y3 – 2x4y + 10x2) – [(-2)(xy)2 (y3 + 7x2y + 5)]

= [5y2 (x2y3) – 5y2 (2x4y) + 5y2 (10x2)] – [(-2)x2y2 (y3 + 7x2y + 5)]

= (5y55x2 – 10x4y3 + 50x2y2)

= 5x2y5 – 10x4y3 + 50x2y2 – [(-2x2y5) – 14x4y3 – 10x2y2]

= 5x2y5 – 10x4y3 + 50x2)y2 + 2x2 y5 + 14x4)y3 + 10x2)y2

= (5 + 2)x2y5 + (-10 + 14)x4y3 + (+50 + 10)x2y2

= 7x2y5 + 4x4y3 + 60x2y2

521.

The length of a rectangular hall is 4 metre lies than 3 times the breadth of the hall.what is the length. if the breadth is b metres

Answer»

Length of the rectangular hall be l 
Given, breadth =b  and length =3b−4
∴l=3b−4

522.

Calculate the zeroes of the polynomial P(x) = 4x2  - 12x + 9

Answer»

Let    P(x) = 4x2 -12x + 9

=  4x- 6x + 9

or,  p(x)  =  2x(2x - 3)  -3(2x  - 3)

 :.    0  =  (2x - 3) (2x - 3)

The zeros are    3 / 2, 3 / 2

:.    x = 3 / 2, 3 / 2

Hence, zeroes of the polynomial  are 3 / 2, 3 / 2.

523.

Evaluate the following using binomial theorem: (i) (101)4 (ii) (999)5

Answer»

(i) (x + a)n = nC0 xna0 + nC1 xn-1 a1 + nC2 xn-2 a2 + … + nCrxn-r ar + … + nCn an 

(101)4 = (100 + 1)4 = 4C0 (100)4 + 4C1 (100)3 (1)1 + 4C2 (100)2 (1)2 + 4C3 (100)1 (1)3 + 4C4 (1)4 

= 1 x (100000000) + 4 x (1000000) + 6 x (10000) + 4 x 100 + 1 x 1 

= 100000000 + 4000000 + 60000 + 400 + 1 

= 10,40,60,401

(ii) (x + a)n = nC0 xna0 + nC1 xn-1 a1 + nC2 xn-2 a2 + … + nCrxn-r ar + … + nCn an  

(999)5 = (1000 – 1)5 = 5C0 (1000)5 – 5C1 (1000)4 (1)1 + 5C2 (1000)3 (1)2 – 5C3 (1000)2 (1)3 + 5C4 (1000) (1)4 – 5C5 (1)5 

= 1(1000)5 – 5(1000)4 – 10(1000)3 – 10(1000)2 + 5(1000) – 1 

= 1000000000000000 – 5000000000000 + 10000000000 – 10000000 + 5000 – 1 

= 995009990004999

524.

If nP4 = 12(nP2), find n.

Answer»

Given that nP4 = 12(nP2

n(n – 1) (n – 2) (n – 3) = 12n(n – 1) 

Cancelling n(n – 1) on both sides we get 

(n – 2) (n – 3) = 4 x 3 

We have product of consecutive number on both sides with decreasing order. 

n – 2 = 4 

∴ n = 6

525.

In how many ways 5 boys and 3 girls can be seated in a row so that no two girls are together?

Answer»

5 boys can be seated among themselves in 5P5 = 5! Ways. After this arrangement, we have to arrange the three girls in such a way that in between two girls there atleast one boy. So the possible places girls can be placed with the x symbol given below. 

x B x B x B x B x B x 

∴ There are 6 places to seated by 3 girls which can be done 6P3 ways. 

∴ Total number of ways = 5! x 6P3 

= 120 x (6 x 5 x 4) 

= 120 x 120 

= 14400

526.

How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?

Answer»

Given that each number starts with 35. We need a 6 digit number. So we have to fill only one’s place, 10’s place, 100th place, and 1000th places. We have to use 10 digits.

In these digits, 3 and 5 should not be used as a repetition of digits is not allowed. Except for these two digits, we have to use 8 digits. One’s place can be filled by any of the 8 digits in different ways, 10’s place can be filled by the remaining 7 digits in 7 different ways.

100th place can be filled by the remaining 6 different ways and 1000th place can be filled by the remaining 5 digits in 5 different ways.

∴ Number of 6 digit telephone numbers = 8 x 7 x 6 x 5 = 1680

527.

How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?

Answer»

The required numbers are lesser than 1000. They are one digit, two-digit or three-digit numbers. 

There are five numbers to be used without repetition. 

One digit number: One-digit numbers are 5. Two-digit number: 10th place can be filled by anyone of the digits by 5 ways and 1’s place can be 4 filled by any of the remaining four digits in 4 ways. 

∴ Two-digit number are 5 x 4 = 20. 

Three-digit number: 100th place can be filled by any of the 5 digits, 10th place can be filled by 4 digits and one’s place can be filled by 3 digits.

∴ Three digit numbers are = 5 x 4 x 3 = 60 

∴ Total numbers = 5 + 20 + 60 = 85.

528.

By the principle of mathematical induction, prove1.2 + 2.3 + 3.4 + … + n(n + 1) = \(\frac{n(n+1)(n+2)}{3}\), for all n ∈ N.

Answer»

Let P(n) denote the statement

1.2 + 2.3 + 3.4 + …… + n(n + 1) = \(\frac{n(n+1)(n+2)}{3}\)

Put n = 1 

LHS = 1(1 + 1) = 2 

RHS = \(\frac{1(1+1)(1+2)}{3}\) = \(\frac{1(2)(3)}{3}\) = 2

∴ P(1) is true. 

Now assume that the statement be true for n = k 

(i.e.,) assume P(k) be true 

(i.e.,) assume 1.2 + 2.3 + 3.4 + … + k(k + 1) = \(\frac{k(k+1)(k+2)}{3}\) be true

To prove: P(k + 1) is true 

(i.e.,) to prove: 1.2 + 2.3 + 3.4 + … + k(k + 1) + (k + 1) (k + 2) 

\(\frac{(k+1)(k+2)(k+3)}{3}\)

Consider 1.2 + 2.3 + 3.4 + ... + k(k + 1) + (k + 1) (k + 2) 

= [1.2 + 23 + … + k(k + 1)] + (k + 1) (k + 2)

\(\frac{k(k+1)(k+2)}{3}\) + (k + 1) (k + 2)

\(\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}\)

\(\frac{(k+1)(k+2)(k+3)}{3}\)

∴ P(k + 1) is true. 

Thus if P(k) is true, P(k + 1) is true. 

By the principle of Mathematical ‘induction, P(n) is true for all n ∈ N.

1.2 + 2.3 + 3.4 + … + n(n + 1) = \(\frac{n(n+1)(n+2)}{3}\)

529.

By the principle of mathematical induction, prove 2n > n, for all n ∈ N.

Answer»

Let P(n) denote the statement 2n > n for all n ∈ N 

i.e., P(n): 2n > n for n ≥ 1 

Put n = 1, P(1): 21 > 1 which is true. 

Assume that P(k) is true for n = k 

i.e., 2k > k for k ≥ 1 

To prove P(k + 1) is true. 

i.e., to prove 2k + 1 > k + 1 for k ≥ 1 

Since 2k > k 

Multiply both sides by 2 

2 . 2k > 2k 

2k + 1 > k + k 

i.e., 2k + 1 > k + 1 (∵ k ≥ 1) 

∴ P(k + 1) is true whenever P(k) is true. 

∴ By principal of mathematical induction P(n) is true for all n ∈ N.

530.

By the principle of mathematical induction, prove n(n + 1) (n + 2) is divisible by 6, for all n ∈ N.

Answer»

P(n): n(n + 1) (n + 2) is divisible by 6. 

P(1): 1 (2) (3) = 6 is divisible by 6 

∴ P(1) is true. 

Let us assume that P(k) is true for n = k 

That is, k (k + 1) (k + 2) = 6m for some m 

To prove P(k + 1) is true i.e. to prove (k + 1) (k + 2) (k + 3) is divisible by 6. 

P(k + 1) = (k + 1) (k + 2) (k + 3) 

= (k + 1)(k + 2)k + 3(k + 1)(k + 2) 

= 6m + 3(k + 1)(k + 2) 

In the second term either k + 1 or k + 2 will be even, whatever be the value of k. 

Hence second term is also divisible by 6. 

∴ P (k + 1) is also true whenever P(k) is true. 

By Mathematical Induction P (n) is true for all values of n.

531.

By the principle of mathematical induction, prove 4 + 8 + 12 + … + 4n = 2n(n + 1), for all n ∈ N.

Answer»

Let P(n) denote the statement 4 + 8 + … + 4n = 2n(n + 1) 

i.e., P(n) : 4 + 8 + 12 + … + 4n = 2n(n + 1) 

Put n = 1, 

P(1): LHS = 4 

RHS = 2 (1)(1 + 1) = 4 

P(1) is true. 

Assume that P(n) is true for n = k

P(k): 4 + 8 + 12 + … + 4k = 2k(k + 1) 

To prove P(k + 1) 

i.e., to prove 4 + 8 + 12 + … + 4k + 4(k + 1) = 2(k + 1) (k + 1 + 1) 

4 + 8 + 12 + … + 4k + (4k + 4) = 2(k + 1) (k + 2) 

Consider, 4 + 8 + 12 + … + 4k + (4k + 4) = 2k(k + 1) + (4k + 4) 

= 2k(k + 1) + 4(k + 1) 

= 2k2 + 2k + 4k + 4 

= 2k2 + 6k + 4 

= 2(k + 1)(k + 2) 

P(k + 1) is also true. 

∴ By Mathematical Induction, P(n) for all value n ∈ N.

532.

By the principle of mathematical induction, prove  32n – 1 is divisible by 8, for all n ∈ N.

Answer»

Let P(n) denote the statement 32n – 1 is divisible by 8 for all n ∈ N 

Put n = 1 

P(1) is the statement 32(1) – 1 = 32 – 1 = 9 – 1 = 8, which is divisible by 8 

∴ P(1) is true. 

Assume that P(k) is true for n = k. 

i.e., 32k – 1 is divisible by 8 to be true. 

Let 32k – 1 = 8m 

To prove P(k + 1) is true. 

i.e., to prove 32(k + 1) – 1 is divisible by 8 

Consider 32(k + 1) – 1 = 32k + 2 – 1 

= 32k.32 – 1

= 32k(9) – 1 

= 32k(8 + 1) – 1

= 3 x 8 + 3 x 1 – 1 

= 32k(8) + 32k – 1 

= 32k(8) + 8m (∵ 32k – 1 = 8m) 

= 8(32k + m), which is divisible by 8. 

∴ P(k + 1) is true wherever P(k) is true. 

∴ By principle of Mathematical Induction, P(n) is true for all n ∈ N.

533.

The value of (5C0 + 5C1) + (5C1 + 5C2) + (5C2 + 5C3) + (5C3 + 5C4) + (5C4 + 5C5) is: (a) 26 – 2 (b) 25 – 1 (c) 28 (d) 27

Answer»

(a) 26 – 2

(5C0 + 5C1 + 5C2 + 5C3 + 5C4 + 5C5) + (5C1 + 5C2 + 5C3 + 5C4

= 25 + (5C0 + 5C1 + 5C2 + 5C3 + 5C4 + 5C5) – (5C0 + 5C5

= 25 + 25 – (1 + 1) (∵ Adding and subtracting of 5C0 and 5C5

= 2(25) – 2 (∵ 5C0 = 5C5 = 1) 

= 26 – 2

534.

By the principle of mathematical induction, prove52n – 1 is divisible by 24, for all n ∈ N.

Answer»

Let P(n) be the proposition that 52n – 1 is divisible by 24. 

For n = 1, P(1) is: 52 – 1 = 25 – 1 = 24, 24 is divisible by 24. 

Assume that P(k) is true. 

i.e., 52k – 1 is divisible by 24 

Let 52k – 1 = 24m 

To prove P(k + 1) is true. 

i.e., to prove 52(k + 1) – 1 is divisible by 24. 

P(k): 52k – 1 is divisible by 24. 

P(k + 1) = 52(k + 1) – 1 

= 52k.52 – 1 

= 52k(25) – 1 

= 52k(24 + 1) – 1 

= 24.52k + 52k – 1 

= 24.52k + 24m 

= 24 [52k + 24] 

Which is divisible by 24 ⇒ P(k + 1) is also true.

Hence by mathematical induction, P(n) is true for all values n ∈ N.

535.

By the principle of mathematical induction, provean – bn is divisible by a – b, for all n ∈ N.

Answer»

Let P(n) denote the statement an – bn is divisible by a – b. 

Put n = 1. Then P(1) is the statement: a1 – b1 = a – b is divisible by a – b 

∴ P(1) is true. Now assume that the statement be true for n = k 

(i.e.,) assume P(k) be true, (i.e.,) ak – bk is divisible by (a – b) be true. 

\(\frac{a^k-b^k}{a-b}\) = m (say) where m ∈ N

⇒ ak – bk = m(a – b) 

⇒ ak = bk + m(a – b) … (1) 

Now to prove P(k + 1) is true, (i.e.,) to prove: ak + 1 – bk + 1 is divisible by a – b 

Consider ak + 1 – bk + 1 = ak.a – bk.b 

= [bk + m(a – b)] a – bk.b [∵ ak = bm + k(a – b)] 

= bk.a + am(a – b) – bk.b 

= bk.a – bk.b + am(a – b) 

= bk(a – b) + am(a – b) 

= (a – b) (bk + am) is divisible by (a – b) 

∴ P(k + 1) is true. 

By the principle of Mathematical induction. P(n) is true for all n ∈ N.

∴ an – bn is divisible by a – b for n ∈ N.

536.

There are 10 true or false questions in an examination. Then these questions can be answered in (a) 240 ways(b) 120 ways (c) 1024 ways (d) 100 ways

Answer»

(c) 1024 ways

For each question, there are two ways of answering it. 

For 10 questions the numbers of ways to answer 

= 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 

= 210 

= 1024 ways

537.

The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is: (a) 2 (b) 6(c) 20 (d) 24

Answer»

(d) 24

Put n = 1 in n(n + 1) (n + 2) (n + 3) 

= 1 x 2 x 3 x 4 

= 24

538.

If nC3 = nC2 then the value of nC4 is: (a) 2 (b) 3 (c) 4 (d) 5

Answer»

(d) 5

Given that nC3 = nC2 

We know that if nCx = nCy then x + y = n or x = y 

Here 3 + 2 = n 

∴ n = 5

539.

If a polygon has 44 diagonals, find the number of its sides.

Answer»

A polygon of n sides has n vertices. By joining any two vertices of a polygon, we obtain either a side or a diagonal of the polygon. 

A number of line segments obtained by joining the vertices of a n sided polygon taken two at a time = Number of ways of selecting 2 out of n.

= nC2

\(\frac{n(n-1)}{2}\)

Out of these lines, n lines are the sides of the polygon, sides can’t be diagonals.

∴ Number of diagonals of the polygon = \(\frac{n(n-1)}{2}\) - n = \(\frac{n(n-3)}{2}\)

Given that a polygon has 44 diagonals. 

Let n be the number of sides of the polygon.

\(\frac{n(n-3)}{2}\) = 44

⇒ n(n – 3) = 88 

⇒ n2 – 3n – 88 = 0 

⇒ (n + 8) (n – 11) 

⇒ n = -8 (or) n = 11 

n cannot be negative. 

∴ n = 11 is number of sides of polygon is 11.

540.

If nPr = 720(nCr), then r is equal to: (a) 4 (b) 5 (c) 6 (d) 7

Answer»

(c) 6

Given nPr = 720(nCr)

\(\frac{n!}{(n-r)!}\) = 720 \(\frac{n!}{r!(n-r)!}\)

1 = \(\frac{720}{r!}\)

r! = 720

r! = 6 x 5 x 4 x 3 x 2 x 1

r! = 6! 

r = 6

541.

The number of diagonals in a polygon of n sides is equal to: (a) nC2 (b) nC2 – 2 (c) nC2 – n (d) nC2 – 1

Answer»

Answer is (c) nC2 – n

542.

The possible outcomes when a coin is tossed five times: (a) 25 (b) 52 (c) 10 (d) \(\frac{5}{2}\)

Answer»

(a) 25

Number of possible outcomes When a coin is tossed is 2 

∴ When five coins are tossed (same as a coin is tossed five times) 

Possible outcomes = 2 x 2 x 2 x 2 x 2 = 25

543.

If four dice are rolled, find the number of possible outcomes in which atleast one die shows 2.

Answer»

When a die is rolled number of possible outcomes is selecting an event from 6 events = 6C1 

When four dice are rolled number of possible outcomes = 6C1 x 6C1 x 6C1 x 6C1 

When a die is rolled number of possible outcomes in which ‘2’ does not appear is selecting an event from 5 events = 5C1 

When four dice are rolled number of possible outcomes in which 2 does not appear = 5C1 x 5C2 x 5C3 x 5C4 

Therefore the number of possible outcomes in which atleast one die shows 2 

= 6C1 x 6C1 x 6C1 x 6C1  – 5C1 x 5C2 x 5C3 x 5C4 

= 6 x 6 x 6 x 6 – 5 x 5 x 5 x 5 

= 1296 – 625

= 671

Note: when two dice are rolled number of possible outcomes is 36 and the number of possible outcomes in which 2 doesn’t appear = 25. When two dice are rolled the number of possible outcomes in which atleast one die shows 2 = 36 – 25 = 11. Use the sample space, S = {(1, 1), (1, 2), … (6, 6)}.

544.

State whether the statement are true or false.If x is a negative integer, – x is a positive integer.

Answer»

True.

Negative of a negative integer is always a positive integer.