Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

If α,β are roots of the equation (x–a)(x–b)+c = 0 (c ≠ 0), then then roots of the equation (x – c – α)(x – c – β) = c are(a)  a and b + c(b)  a + c and b(c) a + c and b + c(d)  None of these 

Answer»

Correct option   (c) a+c and b+c

Explanation:

x– (a + b)x + ab + c = 0

α + β = a + b and α β = ab + c

Now (x – c – α)(x – c – β ) = c

⇒ (x–c)2 – (α + β)(x – c) + α β – c = 0

(x – c)– (a + b)(x – c) + ab = 0

(x – c)2– a(x – c) – b(x – c) + ab = 0

⇒ (x – c – a)(x – c – b) = 0

x = c + a and b + c 

2.

If a ∈ Z and the equation (x – a)(x – 10) +1 = 0 has integral roots, then the values of a are(a)  10, 8(b)  12, 10(c)  12, 8(d)  None of these 

Answer»

Correct option  (c) 12, 8 

Explanation:

⇒ (x – a)(x – 10) = – 1

x – a = 1 & x – 10 = –1

OR x – a = –1  &  x – 10 =1

9 – a = 1  x = 10 – 1 11 – a = – 1  x = 11

a = 8   x = 9    a =12

3.

The polynomial equation (ax2+bx+c)(ax2–dx–c) = 0 , ac ≠ 0 has (a) four real roots(b) atleast two real roots(c) atmost two real roots(d) No real roots 

Answer»

Correct option  (b) atleast two real roots 

Explanation:

ac  0

ac > 0 or ac < 0

Now D1 = b– 4ac & D2 = d2+ 4ac

When ac > 0 

D2  > 0 but D1 may positive or negative

When ac < 0

D1 > 0 but D2 may be positive or negative

In either case the polynomial has atleast two real roots 

4.

If a, b, c ∈ R , and the equation ax2 + bx + c = 0 has no real roots, then (a)  (a + b + c) &gt; 0(b)   a(a + b + c) &gt; 0(c)   b (a + b + c) &gt; 0(d)   c(a + b + c) &lt; 0 

Answer»

Correct option (b)   a(a + b + c) > 0

Explanation:

a > 0

ƒ(0) ⇒ c > 0

ƒ(2) > 0 ⇒ a + b + c > 0

aƒ(1) > 0 & cƒ(1) > 0

a(a + b + c) > 0 and c (a + b + c) > 0

a < 0

ƒ(0) < 0 ⇒ c < 0

ƒ(1) < 0  a + b + c < 0

aƒ(1) > 0 & c.ƒ(1) > 0

a(a + b + c) > 0 and c (a + b + c) > 0

5.

The values of p for which 6 lies between the roots of the equation x2 + 2(p – 3)x + 9 = 0 is(a) (-∞, -3/4)(b)  (-∞, -3/4)(c)  (-∞, 1)(d) none of these

Answer»

Correct option (a) (-∞, -3/4)

Explanation:

D > 0

(– 2(p – 3))2 – 4.1.9 > 0

p– 6p > 0

p (p – 6) > 0

p < 0, p > 6 .....(1) 

a.ƒ(6) < 0

1.(36 + 12(p – 3) + 9)) < 0

12p + 9 < 0

P < -3/4  ...(2)

From (1) and (2)  P ∈ (-∞, -3/4)

6.

The values of m(m ∈ R), for which both roots of the equation x2–6mx + 9m2 – 2m + 2 = 0 exceed 3 is(a)  (-∞, 1)(b)  (-∞, 1)(c)  (1, ∞)(d)  none of these

Answer»

Correct option (d) none of these

Explanation:

D ≥ 0

(–6m)2 –4.1.(9m2 –2m + 2) ≥ 0

8m – 8 ≥ 0

 m ≥ 1 ........(1)

a.f(3) > 0

1.(32 – 18m + 9m– 2m + 2) > 0

9m2 – 20m + 11 > 0

9m2 – 9m – 11m + 11 > 0

9m – 11) (m–1) > 0

m < 1  &  m > 11/9  ...(2)

α + β > 6

6m > 6

From (1), (2) and (3) 

m ∈(11/9, ∞)

7.

The values of m for which both roots of the equation x2 – mx + 1 = 0 are less than unity is(a) (-∞, -2)(b) (-∞, -2)(c) (-2, -∞)(d)  none of these

Answer»

Correct option   (b)  (–,–2]

Explanation:

D ≥ 0

(–m)2 – 4.1.1  ≥ 0

(m – 2) (m + 2)  ≥  0

 m ∈ (–,–2] ∪ [2,) .... (1)

a. f(1) > 0

1.(1 – m + 1) > 0

m < 2

m ∈(–,–2]  ...(2)

α + β < 2

m < 2

m ∈(–,–2]  ...(3)

Form (1), (2) and (3) we have

m ∈(–∞,–2]

8.

If α ,β are roots of the equation x2 – 2x +  3 = 0 Then the equation whose roots are  α3–3 α2 + 5α – 2 and  β3 – β2 + β + 5 is(a)  x2 + 3x + 2 = 0(b)  x2– 3x – 2 = 0(c)  x2 – 3x + 2 = 0(d)  None

Answer»

Correct option (c) x– 3x + 2 = 0

Explanation:

α– 2α + 3 = 0 and β– 2β + 3 = 0 

α– 2α2 + 3α  and β– 2β2 + 3β 

P = α– 3α2 + 5α - 2 = 2α– 3α - 3α2 + 5α - 2

= α– 2α - 2

= 3 - 2 = 1

Similarly, we can show that Q = β– β2 + β + 5 = 2

Sum = 1 + 2 = 3 and product = 1 × 2 = 2

Hence x– 3x + 2 = 0

9.

The all possible values of a for which one root of the equation (a – 5)x2 – 2ax + a – 4 = 0 is smaller than 1 and the other greater than 2 is (a)  [5, 24) (b)  (5, 24] (c)  (5, 24) (d)   none of these 

Answer»

Correct option  (c) (5, 24) 

Explanation:

D ≥ 0

(–2a)2– 4(a – 5) (a – 4) ≥ 0

⇒ 9a –20 ≥ 0

a ≥ 20/9 .......(1)

(a –5) ƒ(1) < 0

(a –5) (a–5 –2a + a – 4) < 0

(a –5) (–a) < 0

a > 5   ........(2)

(a –5) ƒ(2) < 0

(a –5) (4(a – 5) – 4a + a – 4) < 0 

⇒ (a – 5) (a – 24) < 0 

⇒ 5 < a < 24 .........(3)

From (1), (2), and (3) a ∈ (5,24)