

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
151. |
If `Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n_1))/(2),2^(n+1))|`, then the value of `sum_(r=1)^(n) Delta_(r)` isA. nB. 2nC. `-2n`D. `n^(2)` |
Answer» Correct Answer - C We have, `underset(r=1)overset(n)sum Delta_(r) = |(underset(r =1)overset(n)sum 1,underset(r=1)overset(n)sumr,underset(r =1)overset(n)sum 2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))|` `rArr underset(r =1)overset(n)sum Delta_(r) = |(n,(n(n+1))/(2),2^(n +1)-2),(2,(n(n+1))/(2),2^(n+1)),(n,(n (n +1))/(2),2^(n+1) -2)|` `rArr underset(r=1)overset(n)sum Delta_(r) = |(n,(n(n+1))/(2),2^(n+1) -2),(2,n,n^(2)),(0,0,2)| ["Applying " R_(3) rarr R_(3) - R_(1)]` `rArr underset(r=1)overset(n) sum Delta_(r) = 2 {n^(2) - n (n +1)} = -2n` |
|
152. |
If `D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)|`, then the value of `sum_(r=1)^(n) D_(r)`, is |
Answer» Correct Answer - A We have, `underset(r=0)overset(n)sum D_(r) = |(underset(r =1)overset(n)sum r,1,(n(n +1))/(2)),(underset(r=1)overset(n)sum 2r -1,4,n^(2)),(underset(r =1)overset(n)sum 2^(r -1),5,2^(n) -1)|` `rArr underset(r =0)overset(n)sum D_(r) = |((n(n +1))/(2),1,(n(n+1))/(2)),(n^(2),4,n^(2)),(2^(n) -1,5,2^(n) -1)| =0` |
|
153. |
If `A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|`, thenA. `A = 2B`B. `A = B`C. `A = -B`D. none of these |
Answer» Correct Answer - C | |
154. |
Class 12 Maths MCQ Questions of Determinants with Answers? |
Answer» You will find a list of lass 12 Maths MCQ Questions of Determinants with Answers here to start your preparation. Understand the concepts and practice Objective Type Questions for 12 Class Maths the maximum amount as you’ll be able to get well. MCQ Questions for class 12 Maths needs lots of practice. Prepare effectively with Class 12 Maths Chapter Wise Multiple-Choice Questions provided and score well in your board or competitive exams. Go through MCQ questions for class 12 determinants are given here with detailed solutions. The solutions are given in a step-by-step procedure so that students can understand in an easy and better way and score good marks in class 12 final exams. Practice MCQ Question for Class 12 Maths 1. Which of the following is correct? (a) Determinant is a square matrix 2. The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be (a) 9 3. If the points (3, -2), (k, 2), (8, 8) are collinear, then find the value of k. (a) 2 4. The value of \(\begin{vmatrix} sin20^\circ & -cos^\circ \\[0.3em] sin70^\circ& cos70^\circ\end{vmatrix}\) is...... (a) 5 5. \(\begin{vmatrix} cos 70^\circ & sin 20^\circ\\[0.3em] sin 70^\circ & cos 20^\circ \\[0.3em] \end{vmatrix}\) = ? (a) 1 6. \(\begin{bmatrix} cos 15^\circ & sin 15^\circ\\[0.3em] sin 15^\circ & cos 15^\circ \\[0.3em] \end{bmatrix}\) = ? 7. If |A| = 0, then A is (a) zero matrix 8. According to determinant properties, the determinant equals to zero if column is (a) divided to row 9. The rule which provides method of solving the determinants is classified as (a) Cramer's rule 10. If A and B are invertible matrices, then which of the following is not correct? (a) adj A = |A|.A-1 11. Let A be a square matrix of order 3 × 3. Then |kA| is equal to (a) k|A| 12. Using determinants, find the equation of the line joining the points (1, 2) and (3, 6). (a) y = 2x 13. \(\begin{vmatrix} sin 23^ \circ & -sin7^ \circ \\[0.3em] cos23^ \circ & cos7^ \circ \end{vmatrix}\) = ? (a) \(\frac{\sqrt{3}}{2}\) 14. \(\begin{vmatrix} a+ ib & c + id\\[0.3em] -c + id & a - id \end{vmatrix}\) = ? (a) (a2 + b2 – c2 – d2) 15. If area of triangle is 35 sq. units with vertices (2, -6), (5, 4) and (k, 4). Then k is (a) 12 16. Let A be a non-singular matrix of order 3 × 3. Then |adj. A| is equal to (a) |A| 17. \(\begin{vmatrix} 1 & 1 & 1 \\[0.3em] 1 & 1 + x & 1 \\[0.3em] 1 & 1& 1 + y \end{vmatrix}\)= ? (a) (x + y) 18. If \(\begin{vmatrix} 5 & 3 & -1 \\[0.3em] -7 & \text{x} & 2 \\[0.3em] 9 & 6& 2 \end{vmatrix}\)= 0 then x = ? (a) 0 19. If A is an invertible matrix of order 2, then det (A-1) is equal to (a) det (A) 20. Let A be a square matrix all of whose entries are integers. Then which of the following is true? (a) If det A = ± 1, then A-1 need not exist Answer: 1. Answer: (c) Determinant is a number associated to a square matrix Explanation: Determinant is defined only for a square matrix. And its denotes the value of that square matrix. 2. Answer: (b) 3 Explanation: We know that , area of a triangle with vertices (a1,y1),(x2,y2) and (x3,y3) is given by \(\Delta=\frac{1}{2}\)\(\begin{vmatrix} x_1 & y_1&1 \\[0.3em] x_2& y_2&1\\[0.3em] x_3& y_3&1\end{vmatrix}\) \(\therefore\Delta=\frac{1}{2}\)\(\begin{vmatrix} -3 & 0&1 \\[0.3em] 3& 0&1\\[0.3em] 0& k&1\end{vmatrix}\) Expanding along R1 9= 1/2[−3(−k)−0+1(3k)] ⇒18=3k+3k=6k ∴K= 18/6 = 3 3. Answer: (d) 5 Explanation: If the points are collinear than the value determinant is zero. \(\therefore \Delta\) \(=\begin{vmatrix} 3 & -2&1 \\[0.3em] k& 2&1\\[0.3em] 8& 8&1\end{vmatrix}\) Apply R1→(R1 −R3) \(\Delta=\begin{vmatrix} -5 & -10&0 \\[0.3em] k& 2&1\\[0.3em] 8& 8&1\end{vmatrix}\) Apply R2→(R2−R3) \(\Delta=\begin{vmatrix} -5 & -10&0 \\[0.3em] k-8& -6&0\\[0.3em] 8& 8&1\end{vmatrix}\) Expand by c3 ∴k−8=−3 ∴ 4. Answer: (b) 1 Explanation: \(\begin{vmatrix} sin\,20° & -cos\,20° \\[0.3em] sin\,70°& cos\,70° \\[0.3em] \end{vmatrix}\) = sin 20° . cos 70° + cos 20° . sin 70° = sin (20° + 70°) = sin 90° = 1. 5. Answer: (b) 0 Explanation: cos\(\theta\) = sin(90 - \(\theta\)) We have \(\begin{vmatrix} cos 70^\circ & sin 20^\circ\\[0.3em] sin 70^\circ & cos 20^\circ \\[0.3em] \end{vmatrix}\) On expanding the above, ⇒ {cos 70°} {cos 20°} – {sin 70°} {sin 20°} On applying formula cos\(\theta\) = sin(90 - \(\theta\) ) ⇒ {sin (90 – 70)} {sin (90 – 20)} - {sin 70°} {sin 20°} ⇒ {sin 20°} {sin 70°} - {sin 70°} {sin 20°} = 0 6. Answer: (c) \(\frac{\sqrt3}{2}\) Explanation: cos(A + B) = cos A cos B - sin A sin B We have \(\begin{vmatrix} cos 15^\circ & sin 15^\circ\\[0.3em] sin 15^\circ & cos 15^\circ \\[0.3em] \end{vmatrix}\) On expanding the above, ⇒ {cos 15°} {cos 15°} – {sin 15°} {sin 15°} On applying formula cos(A + B) = cos A cos B - sin A sin B = cos (15 + 15) = cos (30°) = \(\frac{\sqrt3}{2}\) 7. Answer: (b) singular matrix Explanation: A matrix can be singular, only if it has a determinant of zero. 8. Answer: (d) multiplied to column 9. Answer: (a) Cramer's rule 10. Answer: (d) (A + B)-1 = B-1 + A-1 11. Answer: (c) k3|A| Explanation: If A is a square matrix of order n , then we can take k common from each of the n rows of kA So, for a square matrix of of order 3, 12. Answer: (a) y = 2x Explanation: We have to find the equation of line joining (1,2) and (3,6) Let the third point on the line be (x,y) The area of a triangle with vertices (x,y),(1,2),(3,6) is \(\frac{1}{2}\begin{vmatrix} x & y&1 \\[0.3em] 1& 2&1\\[0.3em] 3& 6&1\end{vmatrix}\) Since the three points are collinear, the area formed will be zero \(\Rightarrow\begin{vmatrix} x & y&1 \\[0.3em] 1& 2&1\\[0.3em] 3& 6&1\end{vmatrix}=0\) ⟹x(2−6)−y(1−3)+1(6−6)=0 ⟹−4x+2y=0 ⟹2x−y=0. Hence, the equation of line joining (1,2) and (3,6) is 2x−y=0. 13. Answer: (b) \(\frac{1}{2}\) Explanation: sin(A + B) = sin A cos B + cos A sin B We have, \(\begin{vmatrix} sin 23^ \circ & -sin7^ \circ \\[0.3em] cos23^ \circ & cos7^ \circ \end{vmatrix}\) on expanding the above, On expanding the above, ⇒ (sin 23°) (cos 7°) – (cos 23°) (-sin 7°) ⇒ (sin 23°) (cos 7°) + (cos 23°) (sin 7°) On applying formula sin(A + B) = sin A cos B + cos A sin B = sin (23 + 7) = sin (30°) = \(\frac{1}{2}\) 14. Answer: (c) (a2 + b2 + c2 + d2) Explanation: We have \(\begin{vmatrix} a+ ib & c + id\\[0.3em] -c + id & a - id \end{vmatrix}\) On expanding the above, ⇒ (a + ib) (a – ib) – (-c + id) (c + id) ⇒ (a2 – iab + iba – i2b2) - (-c2 – icd + icd + i2d2) ⇒ {a2 – iab + iba – (-1)b2} – {-c2 – icd + icd + (-1)d2} ⇒ {a2 – iab + iba + 1b2} – {-c2 – icd + icd - 1d2} ⇒ a2 + b2 + c2 + d2 15. Answer: (d) 12, -2. Explanation: Area of triangle having vertices as (x1,y1),(x2,y2),(x3,y3) is given as \(=\frac{1}{2}\begin{vmatrix} x_1 & y_1&1 \\[0.3em] x_2& y_2&1\\[0.3em] x_3& y_3&1\end{vmatrix}\) \(\Rightarrow35=\frac{1}{2}\begin{vmatrix} 2 & -6&1 \\[0.3em] 5& 4&1\\[0.3em] k& 4&1\end{vmatrix}\) ⇒35= 1/2 ∣2(0)+6(5−k)+1(20−4k)∣ ⇒∣50−10k∣=70 ⇒50−10k=±70 ⇒50−10k=70 and 50−10k=−70 ⇒−10k=20 and −10k=−120 ⇒k=−2 and k=12 16. Answer: (b) |A|2 17. Answer: (c) xy Explanation: We have, \(\begin{vmatrix} 1 & 1 & 1 \\[0.3em] 1 & 1 + x & 1 \\[0.3em] 1 & 1& 1 + y \end{vmatrix}\) Applying R1 → R2 - R1 \(=\begin{vmatrix} 0 & -x & 0 \\[0.3em] 1 & 1 + x & 1 \\[0.3em] 1 & 1& 1 + y \end{vmatrix}\) Expanding along R1 ⇒ [x{(1)(1+y)-(1)(1)}] ⇒ [x{1+y-1}] ⇒ xy 18. Answer: (c) -6 Explanation: We have, \(\begin{vmatrix} 5 & 3 & -1 \\[0.3em] -7 & \text{x} & 2 \\[0.3em] 9 & 6& 2 \end{vmatrix}\) = 0 Applying R1 → 2R1 \(\Rightarrow\begin{vmatrix} 10 & 6 & -2 \\[0.3em] -7 & \text{x} & 2 \\[0.3em] 9 & 6& -2 \end{vmatrix}\) Applying R1 → R1 -R3 \(\Rightarrow\begin{vmatrix} 1 & 0 & 0 \\[0.3em] -7 & \text{x} & 2 \\[0.3em] 9 & 6& -2 \end{vmatrix}\) Expanding along R1 ⇒ [1{(x)(-2) – (6)(2)}] = 0 ⇒ [1{-2x – 12}] = 0 ⇒ -2x-12 = 0 ⇒ -2x = 12 ⇒ x = -6 19. Answer: (b) 1/det(A) 20. Answer: (d) If det A = ± 1, then A-1 exists and all its entries are integers. Explanation: Since each entry of A is an integer, Click Here to Practice more MCQ Question for Determinants Class 12 |
|
155. |
`|[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2)^3` |
Answer» Apply `C_(1) to C_(1) -bC_(3) "and "C_(2) to C_(2) +aC_(3)` Now, take `(1+a^(2) +b^(2)) "common from each of "C_(1) "and" C_(2)` |
|
156. |
Using properties of determinants, prove that:` |[b^2+c^2,a^2,a^2],[b^2,c^2+a^2,b^2],[c^2,c^2,a^2+b^2]|=4a^2b^2c^2` |
Answer» Apply `R_(1) to R_(1)-(R_(2) +R_(3))"and expand by"C_(1)` | |
157. |
`|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)` |
Answer» Apply `R_(2) to (R_(2) -R_(3)) " and take 4 common from "R_(2)` Now, apply `R_(3) to R_(3)-R_(1) + 2R_(2)` |
|
158. |
`|((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8.` |
Answer» Apply `R_(1) to R_(1) -R_(3) "and "R_(2) to R_(2) -R_(3). "Then, apply" R_(2) to R_(2) +2R_(1)` Now, `C_(2) to C_(2) -C_(1) " and "C_(3) to C_(3) to C_(3) -C_(1)` |
|
159. |
Prove that ` |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2) ` |
Answer» Apply `C_(1) to (C_(1) + C_(2)-2C_(3))` | |
160. |
`|[(m+n)^(2), l^(2), mn], [(n+l)^(2), m^(2), ln], [(l+m)^(2), n^(2), lm]| =(l^(2) +m^(2) +n^(2))(l-m)(m-n)(n-l)(l+m+n)` |
Answer» Apply `C_(1) to (C_(1) + C_(2) -2C_(3)) "and take"(l^(2) + m^(2) + n^(2)) "common from "C_(1)` | |
161. |
For what value of x, the given matrix A = \(\begin{bmatrix} 3-2X & X+1 \\[0.3em] 2 & 4 \end{bmatrix} \) is a singular matrix?A = [(3-2x, x+1),(2,4)] |
Answer» For A to be singular matrix its determinant should be equal to 0. 0= (3-2x) × 4-(x+1) × 2 0= 12-8x-2x-2 0=10-10x X=1. |
|
162. |
Evaluate \(\begin{bmatrix} 0 & 2 & 0 \\[0.3em] 2 & 3 & 4 \\[0.3em] 4 & 5 &6 \end{bmatrix}\). Evaluate [(0,2,0),(2,3,4),(4,5,6)]. |
Answer» We know that expansion of determinant with respect to first row is a11A11 + a12A12 + a13A13. 0(3 × 6-5 × 4)-2(2 × 6-4 × 4)+0(2 × 5-4 × 3) = 8. |
|
163. |
Without expanding the determinant, prove that \(\begin{bmatrix} 41& 1 & 5 \\[0.3em] 79 & 7 & 9 \\[0.3em] 29 &5 & 3 \end{bmatrix}\) = 0SINGULAR MATRIX A square matrix A is said to be singular if |A| = 0. Also, A is called non singular if |A| ≠ 0. |
Answer» We know that C1 ⇒ C1-C2, would not change anything for the determinant. Applying the same in above determinant, we get \(\begin{bmatrix} 41& 1 & 5 \\[0.3em] 79 & 7 & 9 \\[0.3em] 29 &5 & 3 \end{bmatrix}\) Now it can clearly be seen that C1 = 8 x C3 Applying above equation we get, \(\begin{bmatrix} 0& 1 & 5 \\[0.3em] 0 & 7 & 9 \\[0.3em] 0 & 3 & 3 \end{bmatrix}\) We know that if a row or column of a determinant is 0. Then it is singular determinant. |
|
164. |
Find the value of `|{:(41,,1,,5),(79,,7,,9),(29,,5,,3):}|` |
Answer» ` " Let " Delta =|{:(41,,1,,5),(79,,7,,9),(29,,5,,3):}|` Applying `C_(1) to C_(1) - 8C_(3) ` we get ` Delta= |{:(1,,1,,5),(7,,7,,9),(5,,5,,3):}|` `:. Delta =0` `[C_(1) " and "C_(2) " are identical"]` |
|
165. |
Find the value of k for which for points A(1, -1), B(2, k) and C(4, 5) are collinear |
Answer» Correct Answer - k =1 | |
166. |
Find the value of k for which the points P(5, 5), Q(k, 1) and R(11, 7) are collinear |
Answer» Correct Answer - k =-7 | |
167. |
`z=12(cos ((2pi)/3)+i sin ((2pi)/3))`is polar representation of:A. `6(-1+isqrt3)`B. `6(1+isqrt3)`C. `12(-1+isqrt3)`D. `12(1+isqrt3)` |
Answer» Correct Answer - A |
|
168. |
Find the value of determinant`|sqrt((13))+sqrt(3)2sqrt(5)sqrt(5)sqrt((15))+sqrt((26))5sqrt((10))3+sqrt((65))sqrt((15))5|` |
Answer» We have ` Delta=|{:(sqrt(13)+sqrt(3),,2sqrt(5),,sqrt(5)),(sqrt(15)+sqrt(26),,5,,sqrt(10)),(3+ sqrt(65),,sqrt(15),,5):}|` Taking `sqrt(5)` common from`C_(2) " and " C_(3)` we get ` Delta =(sqrt(5))^(2) |{:(sqrt(13)+sqrt(3),,2,,1),(sqrt(15)+sqrt(26),,sqrt(5),,sqrt(2)),(3+ sqrt(65),,sqrt(3),,sqrt(5)):}|` Applying `C_(1) to C_(1) -sqrt(3)C_(2) -sqrt(13)C_(3)` we get `|{:(-sqrt(3),,2,,1),(0,,sqrt(5),,sqrt(2)),(0,,sqrt(3),,sqrt(5)):}|` (Expanding along `C_(1))` |
|
169. |
Let a+b+c =s and `|{:(s+c,,a,,b),(c,,s+a,,b),(c,,a,,s+b):}|=532` then the value of s is `"____"` |
Answer» Correct Answer - 6 Given that ` |{:(s+c,,a,,b),(c,,s+a,,b),(c,,a,,s+b):}|=532` Applying `C_(1) to C_(1)+C_(2)+C_(3)` we get `(a+b+c+s) |{:(1,,a,,b),(1,,s+a,,b),(1,,a,,s+b):}|=532` `rArr 2s |{:(0,,-s,,0),(0,,s,,-s),(1,,a,,s+b):}|=532` `rArr 2s^(3) =532` `:. s^(3) =216` `s=6` |
|
170. |
if `a_(1),a_(2),a+_(3)……,a_(12)` are in A.P and `Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(3)= |{:(a_(2)b_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(3)a_(12),,a_(4),,a_(5)):}|` then `Delta_(2):Delta_(2)= "_____"` |
Answer» Correct Answer - 1 `Delta_(1)= |{:(a_(1)^(2)+4a_(1)d,,a_(1),,d),(a_(2)^(2)+4a_(2)d,,a_(2),,d),(a_(3)^(2)+4a_(3)d,,a_(3),,d):}|, [C_(3)to C_(3)-C_(2)]` where d is the common difference of A.P. `= |{:(a_(1)^(2),,a_(1),,d),(a_(2)^(2),,a_(2),,1),(a_(3)^(2),,a_(3),,1):}|+4d |{:(a_(1),,a_(1),,d),(a_(2),,a_(2),,d),(a_(3),,a_(3),,d):}|` `= d(a_(1) -a_(2))(a_(2)-a_(3))(a_(3)-a_(1))=-2d^(4)` `"Similarly," Delta_(2) =-2d^(4)` |
|
171. |
If the points A(3, -2), B(k, 2) and C(8, 8) are collinear then the value of k is |
Answer» Correct Answer - k =5 | |
172. |
Principle argument of complex number `1+i sqrt3` is:A. `-pi/6`B. `pi/6`C. `-pi/3`D. `pi/3` |
Answer» Correct Answer - D |
|
173. |
`|{:(5sqrt(log_(e)3),,5sqrt(log_(e)3),,3sqrt(log_(e)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"` |
Answer» `Delta = |{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,3sqrt(log_(3)5)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|` `= |{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,3sqrt(log_(3)5)),(3^(log_(1//3)4),,(0.1)^(log_(0.01)2),,7^(log_(7)3)),(7,,3,,5):}|` ` = |{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,3sqrt(log_(3)5)),(4,,2,,3),(7,,3,,5):}|` Applying `C_(2) to C_(2) -C_(1) " and " C_(3) to C_(3)-C_(1)` we get `Delta = |{:(5sqrt(log_(5)3),,0,,0),(4,,-2,,-1),(7,,-4,,-2):}|=0` |
|
174. |
Find the area of the triangle whose vertices are: (i) A(3, 8), B(-4, 2) and C(5, -1) (ii) A(-2, 4), B(2, -6) and C(5, 4) (iii) A(-8, -2), B(-4, -6) and C(-1, 5) (iv) P(0, 0), Q(6, 0) and R(4, 3) (v) P(1, 1), Q(2, 7) and R(10, 8) |
Answer» Correct Answer - (i) 37.5 sq units (ii) 35 sq units (iii) 28 sq units (iv) 9 sq units (v) 23.5 sq units | |
175. |
Evaluate \(\begin{vmatrix} √3 & √5\\[0.3em] -√5 & 3√3 \\[0.3em] \end{vmatrix}\). Evaluate |(√3,√5),(-√5,3√3)| |
Answer» \(\begin{vmatrix} √3 & √5\\[0.3em] -√5 & 3√3 \\[0.3em] \end{vmatrix}\). = 3√3 x √3 - (-√5 x √5) = 14 |
|
176. |
Evaluate \( \begin{vmatrix} \sqrt{3}& \sqrt{5}\\[0.3em] -\sqrt{5} & 3\sqrt{3} \\[0.3em] \end{vmatrix} \) |(√3,√5)(-√5,3√3)| |
Answer» \( \begin{vmatrix} \sqrt{3}& \sqrt{5}\\[0.3em] -\sqrt{5} & 3\sqrt{3} \\[0.3em] \end{vmatrix} \) = 3√3 x √3 - (-√5 x √5) =14. |
|
177. |
For what value of x, the given matrix A = \( \begin{bmatrix} 3 - 2x& x + 1\\[0.3em] 2 & 4 \\[0.3em] \end{bmatrix}\) is a singular matrix?A =[(3-2x, x+1)(2,4)] |
Answer» For A to be singular matrix its determinant should be equal to 0. 0= (3-2x) × 4-(x+1) × 2 0= 12-8x-2x-2 0=10-10x X=1. |
|
178. |
Conjugate of complex number `1+1/i` isसम्मिश्र संख्या `z=1+1/i` का संयुग्मी है :A. `-1`B. `1`C. `1-i`D. `1+i` |
Answer» Correct Answer - D |
|
179. |
Evaluate `|[sqrt(3), sqrt(5)],[-sqrt(5), 3sqrt(3)]|` |
Answer» Correct Answer - 14 | |
180. |
Evaluate \( \begin{vmatrix} 14& 9\\[0.3em] -8 & -7 \\[0.3em] \end{vmatrix} \) |(14,9)(-8,-7)| |
Answer» \( \begin{vmatrix} 14& 9\\[0.3em] -8 & -7 \\[0.3em] \end{vmatrix} \) = 14 × (-7)-9 × (-8) = -26 |
|
181. |
Evaluate \(\begin{bmatrix} 14 & 9 \\[0.3em] -8 & -7 \\[0.3em] \end{bmatrix}\) Evaluate [(14,9)(-8,-7)] |
Answer» \(\begin{bmatrix}14 & 9 \\[0.3em]-8 & -7 \\[0.3em]\end{bmatrix}\) = 14 x (-7) - 9 x (-8) = -26 |
|
182. |
Evaluate `|[14, 9],[-8, -7]|` |
Answer» Correct Answer - `-26` | |
183. |
Let `A` be a square matrix of order `3 x 3` Write the value of `|2A|` where `|A|=4 ` |
Answer» Correct Answer - 32 | |
184. |
If `|A|=0`, then matrix isA. Singular MatrixB. Non-singular MatrixC. Diagonal MatrixD. Scalar Matrix |
Answer» Correct Answer - A |
|
185. |
`|(2-i)+(-4+3i)|=`A. `sqrt2`B. `8`C. `2sqrt2`D. None of these |
Answer» Correct Answer - C |
|
186. |
If `i=sqrt(-1)` then `(2-3i)(2+3i)=`A. `-5`B. `-5i`C. `13`D. `5i` |
Answer» Correct Answer - C |
|
187. |
If `i=sqrt(-1)` then `2(3-4i)+6i=`A. `-2(3-i)`B. `2(3+i)`C. `-2(3+i)`D. `2(3-i)` |
Answer» Correct Answer - D |
|
188. |
The value of `|(11,12,13),(12,13,14),(13,14,15)|`, isA. 1B. 0C. `-1`D. 67 |
Answer» Correct Answer - B | |
189. |
The vlaue of `|(x,4,y +z),(y,4,z +x),(z,4,x +y)|`, isA. 4B. `x + y + z`C. xyzD. 0 |
Answer» Correct Answer - B | |
190. |
If `a != b != c`, are value of x which satisfies the equation `|(0,x -a,x -b),(x +a,0,x -c),(x +b,x +c,0)| = 0` is given byA. `x = 0`B. `x = c`C. `x =b`D. `x =a` |
Answer» Correct Answer - A | |
191. |
If `a != b != c`, are value of x which satisfies the equation `|(0,x -a,x -b),(x +a,0,x -c),(x +b,x +c,0)| = 0` is given byA. aB. bC. 0D. 1 |
Answer» Correct Answer - C | |
192. |
If A and B are two matrices such that `A + B` and AB are both defined, thenA. A and B are two matrices not necessarily of same orderB. A and B are square matrices of same orderC. number of column of A = number of rows of BD. none of these |
Answer» Correct Answer - B | |
193. |
Let `a ,b , c`be the real numbers. The following system of equations in `x ,y ,a n dz``(x^2)/(a^2)+(y^2)/(b^2)-(z^2)/(a^2)=1,(x^2)/(a^2)-(y^2)/(b^2)+(z^2)/(a^2)=1,-(x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(a^2)=1`hasa. no solution b. uniquesolutionc. infinitely many solutionsd. finitely many solutionsA. no solutionB. unique solutionC. infinitely many solutionD. finitely many solutions |
Answer» Correct Answer - B | |
194. |
it is known that the equation of hyperbola and that of its pair of asymptotes differ by constant . If equation of hyperbola is `x^(2) +4xy+3y^(2) -4x+2y+1=0` then find the equation of its pair of asymptoes. |
Answer» Correct Answer - `x^(2) +4xy+3y^(2)-4x+2y-21=0` Let te equation of pair of asymptotes be `x^(2) +4xy+3y^(2)-4x+2y+1+k=0` This is the equation of pair of straight lines `:. |{:(1,,2,,-2),(2,,3,,1),(-2,,1,,1+k):}|=0` `rArr 1(3+3k-1)-2(2+2k+2)-2(2+6)=0` `rArr 3k+2-4k-8-16=0` `rArr k=-22` |
|
195. |
Show that: `|b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2` |
Answer» `Delta = |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,cb,,a^(2)+b^(2)):}|` `= |{:(0,, c,,b),(c,,0,,a),(c,,a,,0):}| |{:(0,,c,,b),(c,,0,,a),(b,,a,,0):}|` `=(2abc)^(2)=4a^(2)b^(2)c^(2)` |
|
196. |
For all values of `A ,B ,Ca n dP ,Q ,R`show that`|"cos"(A-P)"cos"(A-Q)"cos"(A-R)"cos"(B-P)"cos"(B-Q)"cos"(B-R)"cos"(C-P)"cos"(C-Q)"cos"(C-R)|=0` |
Answer» `|{:(cos(A-P),,cos(A-Q),,cos(A-R)),(cos(B-P),,cos(B-Q),,cos(B-R)),(cos(C-P),,cos(C-Q),,cos(C-R)):}|` `|{:(cos A cos P + sin A sin P,,cos A cos Q +sin A sin Q,,cos A cos R + sin A sin R),(cos B cos P +sin B sin P,,cos B cos Q+ sin C sinQ,,cos B cos R+sinB sinR),(cos C cos P+ sin C sin P,,cos C cos Q+sin C sin Q,,cosCcosR+sinCsinR):}|` `|{:( cos A,, sin A,,0),(cos B,,sinB,,0),(cos C,,sin C,,0):}| |{:(cos P,,sin P,,0),(cos Q,,sin Q,,0),(cos R,,sin R,,0):}|` `=0xx0=0` |
|
197. |
Prove that `|((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)` |
Answer» Correct Answer - 64 Let `D= |{:((beta +gamma-alpha-delta)^(4),,(beta+gamma-alpha-delta)^(2),,1),((gamma+alpha-beta-delta)^(4),,(gamma+alpha-beta-delta)^(2),,1),((alpha+beta-gamma-delta)^(4),,(alpha+beta-gamma-delta)^(2),,1):}|` Applying `R_(1) toR_(1) -R_(3) ,R_(2) to R_(2)-R_(3)` `= |{:((beta+gamma-alpha-delta)^(4)-(alpha+beta-gamma-delta)^(4),,(beta+gamma-alpha-delta)^(2)-(alpha+beta-gamma-delta)^(2),,0),((gamma+delta-beta-delta)^(4)-(alpha+beta-gamma-delta)^(4),,(gamma+alpha-beta-delta)^(2)-(alpha+beta-gamma-delta)^(2),,0),((alpha+beta-gamma-delta)^(4),,(alpha+beta-gamma-delta)^(2),,1):}|` `=4(beta-delta)(gamma-alpha).4(alpha-delta)(gamma-beta)` `xx |{:((beta+gamma-alpha-delta)^(2)+(alpha+beta-gamma-delta)^(2),,1,,0),((gamma+alpha+beta-delta)^(2)+(alpha +beta-gamma-delta)^(2),,1,,0),((alpha+beta-gamma-delta)^(4),,(alpha+beta-gamma-delta)^(2),,1):}|` Applying `R_(1) to R_(1)-R_(2)` `=16(beta -delta)(gamma-alpha)(alpha-delta).4(gamma-delta)(beta-alpha)` `xx |{:(1,,0,,0),((gamma+alpha-beta-delta)^(2)+(alpha+beta-gamma-delta)^(2),,1,,0),((alpha+beta-gamma-delta)^(4),,(alpha+beta-gamma-delta)^(2),,1):}|` `=-64(alpha -beta) (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta)` |
|
198. |
Prove that`|2alpha+beta+gamma+deltaalphabeta+gammadeltaalpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta)alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0` |
Answer» consider the product `|{:(1,,1,,0),(alpha+beta,,gamma+delta,,0),(alphabeta,,gammadelta,,0):}|xx |{:(1,,1,,0),(gamma+delta,,alpha+beta,,0),(gammadelta,,alphabeta,,0):}|` `= |{:(2,,alpha+beta+gamma+delta,,gammadelta+alphabeta),(alpha+beta+gamma+delta,,2(alpha+beta)(gamma+delta),,alphabeta(gamma+delta)+gammadelta(alpha+beta)),(alphabeta+gammadelta,,alphabeta(gamma+delta)+gammadelta(alpha+beta),,2alphabetagammadelta):}|` `=Delta` hence `Delta=0` [being the product of two determinants each equal to0] |
|
199. |
Prove that`|(b+x)(c+x)(v+x)(a+x)(a+x)(b+x)(b+y)(c+y)(c+x)(a+t)(a+y)(b+y)(b+z)(c+z)(c+z)(a+z)(a+z)(b+z)|=(b-c)(c-a)(y-z)(x-y)dot` |
Answer» `|{:((b+x)(c+x),,(c+x)(a+x),,(a+x)(b+x)),((b+y)(c+y),,(c+y)(a+y),,(a+y)(b+y)),((b+x)(c+z),,(c+z)(a+z),,(a+z)(b+z)):}|` `= |{:(bc+(b+c)x+x^(2),,ac+(a+c)x+x^(2),,ab+(a+b)x+x^(2)),(bc+(b+c)y+y^(2),,ac+(a+c)y+y^(2),,ab+(a+b)y+y^(2)),(bc+(b+c)z+z^(2),,ac+(a+c)z+z^(2),,ab+(a+b)z+z^(2)):}|` `|{:(bc,,b+c,,1),(ac,,a+c,,1),(ab,,a+b,,1):}| |{:(1,,x,,x^(2)),(1,,y,,y^(2)),(1,,z,,z^(2)):}|` `=(b-c)(c-a)(a-b)(y-z)(z-x)(x-y)` |
|
200. |
`Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4, 1+bc+b^2c^2),(1+ac+a^2c^2, 1+bc+b^2c^2, 1+c^2c^4)|` is equal to |
Answer» `Delta= |{:(1+a^(2)+a^(4),,1+ab+a^(2)b^(2),,1+ac+^(2)c^(2)),(1+ab+a^(2)b^(2),,1+b^(2)+b^(4),,1+bc+b^(2)c^(2)),(1+ac+a^(2)c^(2),,1+bc+a^(2)c^(2),,1+c^(2)+c^(4)):}|` `= |{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}| |{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}|=(a-b)^(2)(b-c)^(2)(c-a)^(2)` |
|