Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

if `(x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2).` where a,b,c are positive then prove that `4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)`

Answer» we have `sqrt((x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2))=a`
`sqrt((x^(2)-x_(3))^(2)+(y_(2)-y_(3))^(2))=b`
`sqrt((x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2))=c`
Consider triangle having vertices `A(x_(1),y_(1)),B(x_(2),y_(2))` and
So , `AB=a,BC=b " and "AC= c.Also ,2s=a+b+c` where s is semi-perimetre.
Area of triangle ABC
`Delta=(1)/(2) ||{:(x_(1),,y_(1),,1),(x_(2),,y_(2),,1),(x_(3),,y_(3),,1):}||`
Also `Delta= sqrt(s(s-a)(s-b)(s-c))`
`:. ||{:(x_(1),,y_(1),,1),(x_(2),,y_(2),,1),(x_(3),,y_(3),,1):}||=sqrt(s(s-a)(s-b)(s-c))`
Squaring and simplifying we get
`4 |{:(x_(1),,y_(1),,1),(x_(2),,y_(2),,1),(x_(3),,y_(3),,1):}|^(2)`
=`(a+b+c)(b+c-a)(c+a-b)(a+b-c)`
52.

Find the value of `lambda " if " 2x^(2) +6xy +3y^(2) +8x +14y +lambda =0` represent a pair of straight lines.

Answer» `ax^(2) +2hxy+ by^(2) 2gx + 2fy+ c=0` represents a pair of lines if
`|{:(a,,h,,g),(h,,b,,f),(g,,f,,c):}|=0`
`rArr|{:(2,,7//2,,4),(7//2,,3,,7),(4,,7,,lambda):}|=0`
`" or " 6lambda +2(7) (4) ((7)/(2)) -2(7)^(2) -3 (4)^(2) -lambda ((7)/(2))^(2) =0`
`" or " 6 lambda +196 -98 -48 -(49lambda)/(4)=0`
`" or " (49lambda)/(4)-6lambda =196 -146 =50`
`" or " (25lambda)/(4)=50 " or " lambda =(200)/(25)=8`
53.

Factorize the following`|3a+b+c a^3+b^3+c^3a+b+c a^2+b^2+c^2a^4+b^4+c^4a^2+b^2+c^2a^3+b^3+c^3a^5+b^5+c^5|`

Answer» `|{:(3,,a+b+c,,a^(3)+b^(3)+c^(3)),(a+b+c,,a^(2)+b^(2)+c^(2),,a^(4)+b^(4)+c^(4)),(a^(2)+b^(2)+c^(2),,a^(3)+b^(3)+c^(3),,a^(5)+b^(5)+c^(5)):}|`
`= |{:(3,,a+b+c,,a^(3)+b^(3)+c^(3)),(a+b+c,,a^(2)+b^(2)+c^(2),,a^(4)+b^(4)+c^(4)),(a^(2)+b^(2)+c^(2),,a^(3)+b^(3)+c^(3),,a^(5)+b^(5)+c^(5)):}|`
`=|underset(a^(2)" "b^(2)" "c^(2))underset(a" "b" "c)(1" "1" "1)||underset(a^(3)" "b^(3)" "c^(3))underset(a" "b" "c)(1" "1" "1)|`
`=[(a-b)(b-c)(c-a)][(a+b+c)(a-b)(b-c)(c-a)`
`=(a-b)^(2)(b-c)^(2)(c-a)^(2)(a+b+c)`
54.

` " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a factor of " Delta " is "`A. `a+b+x`B. `x^(2)-(a-b)x+a^(2)+b^(2)+ab`C. `x^(2)+(a+b)x+a^(2)+b^(2)-ab`D. `a+b-x`

Answer» Correct Answer - C::D
Applying `C_(1) to C_(1)+C_(2)+C_(3)` we get
`Delta =|{:(a+b-x,,a,,b),(a+b-x,,-x,,a),(a+b-x,,b,,-x):}|=(a+b-x) |{:(1,,a,,b),(1,,-x,,a),(1,,b,,-x):}|`
`=(a+b-x) |{:(1,,a,,b),(0,,-x-a,,a-b),(0,,b-a,,-x-b):}|`
`"[Applying "R_(2) to R_(2) -R_(1)" and " R_(3) to R_(3)-R_(1)"]"`
`=(a+b-x)[(x+a)(x+b)+(a-b)^(2)]`
[expanding along `C_(1)`]
`=(a+b-x)[x^(2) +(a+b)x +a^(2) +b^(2) -ab]`
55.

If `a != b != c`, are value of x which satisfies the equation `|(0,x -a,x -b),(x +a,0,x -c),(x +b,x +c,0)| = 0` is given byA. aB. bC. cD. 0

Answer» Correct Answer - D
56.

If x, y , z are in A.P., then the value of the det (A) is , where `A = [(4,5,6,x),(5,6,7,y),(6,7,8,z),(x,y,z,0)]`

Answer» Correct Answer - A
57.

`" if " f(0) = |{:(sin 0 ,,cos 0,,sin 0),(cos0,,sin0,,cos0),(cos0,, sin 0,,sin 0):}|` thenA. f(0)= 0 has exactly 2 real solutions in `[0 ,pi]`B. f(0) =0 has exactly 3 real solutions in `[0 ,pi]`C. range of function `(f(0))/(1-sin 2 0) " is " [-sqrt(2) , sqrt(2)]`D. range of fucntion .`(f(0))/(sin 2 0-1) " is " [-3,3]" is " [-3,3]`

Answer» Correct Answer - A::C
`f(0) =sin^(3) 0 +cos^(3) 0 -cos 0 sin 0 (sin0 + cos 0)`
`=(sin 0 + cos 0 )^(3) -4 sin 0 cos 0 (sin 0 + sin 0)`
`=(sin 0 +cos 0) [1-sin 2 0]`
`Now f(0)=0`
`rArr tan 0 =-1 " or " sin 20 =1 `
`rArr f(0) =0` has 2 real solutions in `[0,pi]`
58.

show that the determinant `|{:(a^(2)+b^(2)+c^(2),,bc+ca+ab,,bc+ca+ab),(bc+ca+ab,,a^(2)+b^(2)+c^(2),,bc+ca+ab),(bc+ca+ab,,bc+ca+ab,,a^(2)+b^(2)+c^(2)):}|` is always non- negative.

Answer» `|{:(a^(2)+b^(2)+c^(2),,bc+ca+ab,,bc+ca+ab),(bc+ca+ab,,a^(2)+b^(2)+c^(2),,bc+ca+ab),(bc+ca+ab,,bc+ca+ab,,a^(2)+b^(2)+c^(2)):}|`
`=|underset(c" "a" "b)underset(b" "c" "a)(a" "b" "c)||underset(c" "a" "b)underset(b" "c" "a)(a" "b" "c)|`
Which is always non-negative.
59.

If `f(x)= |{:(1,,x,,x+1),(2x,,x(x-1),,(x+1)x),(3x(x-1),,x(x-1)(x-2),,(x+1)x(x-1)):}|` then the value of f(500) `"_____"`

Answer» Taking x common from `R_(2) " and " x(x-1)` common from`R_(3)` we get
`f(x) =x^(2) (x-1) |{:(1,,x,,x+1),(2,,x-1,,x+1),(3,,x-2,,x+1):}|`
Applying `C_(3) to C_(3)-C_(2)` we get
`f(x) =x^(2) (x-1) |{:(1,,x,,1),(2,,x-1,,2),(3,,x-2,,3):}|=0`
Thus `f(500) =0 `
60.

If `|(x, x+y, x+y+z),(2x+3x+2y, 4x+3y+2z),(3x+6x+3y, 10x+6y+3z)|=64` then the real value of x is

Answer» Correct Answer - 4
`Delta= x |{:(1,,x+y,,x+y+z),(2,,3x+2y,,4x+3y+2z),(3,,6x+3y,,10x+6y+3z):}|`
`=x^(2) |{:(1,,1,,x+y),(2,,3,,4x+3y),(3,,6,,10x+6y):}|[C_(3) to C_(3)-zC_(1),C_(2)to C_(2)-yC_(1)]`
`=x^(3) |{:(1,,1,,1),(2,,3,,4),(3,,6,,10):}|[C_(3) to C_(3)-yC_(2)]`
`=x^(3) (6-8+3) =64`
`x^(3) 64" or " x=4`
61.

Let `D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c|`then the value of `|(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c ,`is _____.

Answer» Correct Answer - 2
Using `C_(3) to C_(3) -(C_(1)+C_(2))" in " D_(1) " and" D_(2) ` we have
`(D_(1))/(D_(2)) =(-2b(ad-bc))/(b(ad-bc)) =-2`
62.

If `a^(2) + b^(2) + c^(3) + ab + bc + ca le 0` for all, `a, b, c in R`, then the value of the determinant `|((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))|`, is equal toA. 65B. `a^(2) + b^(2) + c^(2) + 31`C. `4(a^(2) + b^(2) + c^(2))`D. 0

Answer» Correct Answer - A
We have,
`a^(2) + b^(2) + c^(3) + ab + bc + ca le 0`
`rArr 2a^(2) + 2b^(2) + 2c^(2) + 2ab + 2bc + 2ca le 0`
`rArr (a +b)^(2) + (b +c)^(2) + (c +a)^(2) le 0`
`rArr a + b = 0, b +c = 0, c + a= 0`
`rArr (a +b) + (b+c) + (c +a) = 0 rArr a + b + c = 0`
Thus, we have `a + b = 0, b + c = 0, c + a = 0 and a + b + c = 0`
`rArr a = b = c = 0`
`:. [((a + b +2)^(2),a^(2) + b^(2),1),(1,(b + c =2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c + a + 2)^(2))] = [(4,0,1),(1,4,0),(0,1,4)] = 65`
63.

If a,b,c are all distinct and `|[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]|` =0, show that abc(ab+bc+ac) = a+b+c

Answer» we have `|{:(a,,a^(3),,a^(4)),(b,,b^(3),,b^(4)),(c,,c^(3),,c^(4)):}|-|{:(a,,a^(3),,1),(b,,b^(3),,1),(c,,c^(3),,1):}|=0 "(Splitting w.r.t " C_(3)")"`
`:. Abc |{:(1,,a^(2),,a^(3)),(1,,b^(2),,b^(3)),(1,,c^(2),,c^(3)):}|-|{:(1,,a,,a^(3)),(1,,b,,b^(3)),(1,,c,,c^(3)):}|=0`
`rArr abc(a -b) (b-c) (c-a) (ab+bc+ca)`
`-(a-b)(b-c) (c-a)(a+b+c) =0`
`rArr abc (ab+bc+ca) -(a+b+c)=0`
`(As a,b,c " are distinct)"`
64.

`[[a,b,ax+by],[b,c,bx+cy],[ax+by,bx+cy,0]]=(b^2-ac)(ax^2+2bxy+cy^2)`

Answer» Apply `R_(3) to (R_(3) -xR_(1) - yR_(2))`
65.

Prove that `|[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2`

Answer» `|{:(a^(2)+1,,ab,,ac),(ab,,b^(2)+1,,bc),(ac,,bc,,c^(2)+1):}|`
`=(1)/(abc) |{:(a(a^(2)+1),,ab^(2),,ac^(2)),(a^(2)b,,b(b^(2)+1),,bc^(2)),(a^(2),,b^(2),,c(c^(2)+1)):}|`
[Multiplying `C_(1)C_(2)C_(3)` by a,b,c respectively]
`=(abc)/(abc) |{:(a^(2)+1,,b^(2),,c^(2)),(a^(2),,b^(2)+1,,c^(2)),(a^(2),,b^(2),,c^(2)+1):}|`
[Taking common a,b , c from `R_(1)R_(2)R)_(3)` respectively]
`|{:(1+a^(2)+b^(2)+c^(2),,b^(2),,c^(2)),(1+a^(2)+b^(2)+c^(2),,b^(2)+1,,c^(2)),(1+a^(2)+b^(2)+c^(2),,b^(2),,c^(2)+1):}|`
`[C_(1) to C_(1) +C_(2) +C_(3)]`
`= (1+a^(2) +b^(2) +c^(2)) |{:(1,,b^(2),,c^(2)),(1,,b^(2)+1,,c^(2)),(1,,b^(2),,c^(2)+1):}|`
`=(1+a^(2)+b^(2)+c^(2)) |{:(1,,b^(2),,c^(2)),(0,,1,,0),(0,,0,,1):}|`
[Applying `R_(2) to R_(2) -R_(1) " and " R_(3) to R_(3) to R_(3)-R_(1)]`
`=(1+a^(2) +b^(2)+c^(2))`
66.

prove that `|{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}|` `|{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)`

Answer» Multiplying `R_(1)R_(2),R_(3)` by a,b,c respectively and dividing by abc we get `Delta =(1)/(abc)xx |{:(a(b+c)^(2),,ba^(2),,ca^(2)),(ab^(2),,b(c+a)^(2),,cb^(2)),(ac^(2),,bc^(2),,c(a+b)^(2)):}|`
Taking a,b,c common from` C_(1),C_(2) " and " C_(3) ` respectively we get
`Delta = |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}|`
` " Now applying " C_(2) to C_(2) -C_(1),C_(3) to C_(3) -C_(1)` gives
`Delta =|{:((b+c)^(2),,(a+b+c)(a-b-c),,(a-b-c)(a+b+c)),(b^(2),,(c+a+c)(c+a-b),,0),(c^(2),,0,,(a+b+c)(a+b-c)):}|`
` (a+b+c)^(2) xx |{:((b+c)^(2),,a-b-c,,a-b-c),(b^(2),,c+a-b,,0),(c^(2),,0,,a+b-c):}|`
Applying `R_(1) to R_(1) -(R_(2)+R_(3))` and then taking 2 common from `R_(1)` we get
`Delta =2(a+b+c)^(2) xx |{:(bc,,-c,,-b),(b^(2),,c+a-b,,0),(c^(2),,0,,a+b-c):}|`
`" Now applying "C_(2) to bC_(2) +C_(1), C_(3) to cC_(3) +C_(1)` gives
`Delta =(2(a+b+c)^(2))/(bc) xx |{:(bc,,0,,0),(b^(2),,b(c+a),,b^(2)),(c^(2),,c^(2),,c(a+b)):}|`
`=(2(a+b+c)^(2))/(bc) bc[(bc +ba)(ca+cb)-b^(2)c^(2)]`
`=2(a+b+c)^(2) [bc(ac+bc+ab+a^(2)-bc)]`
`2abc (a+b+c)^(3)`
67.

If `A , Ba n dC`are theangels of a triangle, show that`|-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0`

Answer» `Delta= |{:(-1+cos B,,cos C+cos B,,cos B),(cos C+cos A,,-1+cos A,,cos A),(-1+cos B,,-1+cos A,,-1):}|`
Applying `C_(1) to C_(1) -C_(3):C_(2)to C_(2)-C_(3)`
`|{:(-1,,cos C,,cos B),(cos C,,-1,,cos A),(cos B,,cos A,,-1):}|" "underset("A,B and C respectvely")underset("opposite to angles")("where a, b and c are sides")`
Applying `C_(1) to C_(1)+bC_(2)+cC_(3)`
`=(1)/(a) |{:(-a+b cos C+c cos B,,cos C,,cos B),(a cos C-b + cos A,,-1,,cos A),(a cos B +b cos A-c,,cos A,,-1):}|`
`=(1)/(a) |{:(0,,cos C,,cos B),(0,,-1,,cos A),(0,,cos A,,-1):}|=0`
(using projection rule in trianble)
68.

A triangle has vertices `A_(i) (x_(i),y_(i))` for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that `|{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0`

Answer» Altitudes of triangle are concurrent at `H(0,0)` Then `A_(1) H bot A_(2)A_(3)`
`rArr (y_(1)-0)/(x_(1)-0).(y_(2)-y_(3))/(x^(2)-x_(3))=-1`
`" or " y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))=0`
Similarly `A_(2)H bot A_(3)A_(1) " and " A_(3) H bot A_(1)A_(2)`
`rArr y_(2)(y_(3)-y_(1)) +x_(2)(x_(3)-x_(1))=0`
`" and " y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))=0`
`Dela =|{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|`
`= |{:(x_(2)-x_(3),,y_(2)-y_(3),,0),(x_(3)-x_(1),,y_(3)-y_(1),,0),(x_(1)-x_(2),,y_(1)-y_(2),,0):}|=0`
69.

If `A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3))` are vertices of an equilateral triangle whose each side is equal to a, then prove that `|(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|` is equal toA. `2a^(2)`B. `2a^(4)`C. `3a^(2)`D. `3a^(4)`

Answer» Correct Answer - D
Let `Delta` be the area of triangle ABC. Then, `Delta = (1)/(2) |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| rArr 2 Delta = |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|`
`rArr 4 Delta = |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| = |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|`
`rArr 16Delta^(2) = |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|`..(i)
But, the area of an equilateral triangle with each side equal to a is `(sqrt3)/(4) a^(2)`
`:. Delta = (sqrt3)/(4) a^(2) rArr 16 Delta^(2) = 3a^(4)`..(ii)
From (i) and (ii), we obtain
`|(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|^(2) = 3a^(4)`
70.

If `f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|,`thenA. f(300,200=f(400,200)B. f(200,400)=f(200,600)C. f(100,200)=f(200,200)D. none of these

Answer» Correct Answer - A::C
`|{:(cos alpha,,-sin alpha,,1),(sin alpha,,cos alpha,,1),(cos (alpha+beta),,-sin(alpha+beta),,1):}|`
`=|{:(cos alpha,,-sinalpha,,1),(sin alpha,,coa alpha,,1),(0,,0,,1+ sin beta -cos beta):}|`
`"[Applying " R_(3) toR_(3)-R_(1) (cos beta) +R_(2) (sin beta)"]"`
`=(1+sin beta -cos beta) (cos^(2) alpha+ sin^(2)alpha)`
`=1+ sin beta- cos beta `which is independent of `alpha`
71.

Which of the following has`//`have value equal to zero ?A. `|{:(8,,2,,7),(12,,3,,5),(16,,4,,3):}|`B. `|{:(1//a,,a^(2),,bc),(1//b,,b^(2),,ac),(1//c,,c^(2),,ab):}|`C. `|{:(a+b,,2a+b,,3a+b),(2a+b,,3a+b,,4a+b),(4a+b,,5a+b,,6a+b):}|`D. `|{:(2,,43,,6),(7,,35,,4),(3,,17,,2):}|`

Answer» Correct Answer - A::B::C
`|{:(8,,2,,7),(12,,3,,5),(16,,4,,3):}|=|{:(8,,2,,7),(4,,1,,-2),(4,,1,,-2):}|" " underset(R_(2) to R_(2)-R_(1))(R_(3) to R^(3) -R_(2)" and ")`
`|{:(1//a,,a^(2),,bc),(1//b,,b^(2),,ac),(1//c,,c^(2),,ab):}|=(1)/(abc) |{:(1,,a^(3),,abc),(1,,b^(3),,abc),(1,,c^(3),,abc):}|`
`[R_(1) to aR_(1),R_(2) to bR_(2) ,R_(3) to cR_(3)]`
`=(abc)/(abc) |{:(1,,a^(3),,1),(1,,b^(3),,1),(1,,c^(3),,1):}|`
[taking abc common from `C_(3)`]
`|{:(a+b,,2a+b,,3a+b),(2a+b,,3a+b,,4a+b),(4a+b,,5a+b,,6a+b):}|=|{:(a+b,,2a+b,,3a+b),(a,,a,,a),(2a,,2a,,2a):}|`
`[R_(3) to R_(3) -R_(2),R_(2) to R_(2)-R_(1)]`
`=0`
`|{:(2,,43,,6),(7,,35,,4),(3,,17,,2):}|=|{:(2,,1,,6),(7,,7,,4),(3,,3,,2):}|" "[C_(2) to C_(2) -7 C_(3)]`
`=|{:(1,,1,,6),(0,,7,,4),(0,,3,,2):}|" "[C_(2) to C_(1) -C_(2)]`
`=2`
72.

if the system of equations `(a-t)x+by +cz=0` `bx+(c-t) y+az=0` `cx+ay+(b-t)z=0` has non-trivial solutions then product of all possible values of t isA. `|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|`B. `a+b+c`C. `a^(2)+b^(2)+c^(2)`D. `1`

Answer» Correct Answer - A
The given system of equations will have a non-trivial solutions if the determinant of coefficient is 0.
`Delta= |{:(a-t,,b,,c),(b,,c-t,,a),(c,,a,,b-t):}|=0`
`Delta=0` is a cubic equation in t, so it has 3 solutions say `t_(1), t_(2)" and " t_(3)`
Let `Delta =p_(0)t_(3)+p_(1)t^(2) +p_(2)t+p_(3)`
Clearly ,Po= coeff . of `t^(3)` which is equal to -1 , so
`t_(1) t_(2)t_(3) =-(P_(3))/((-1))=P_(3)`
= constant term in the expansion of `Delta i.e, Delta _((t=0))`
hence `t_(1)t_(2)t_(3)= |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|`
73.

If `l_(1), m_(1), n_(1), l_(2), m_(2), n_(2) and l_(3), m_(3), n_(3)` are direction cosines of three mutuallyy perpendicular lines then, the value of `|(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3))|` isA. `l_(3) m_(3) n_(3)`B. `+- 1`C. `l_(1) m_(1) n_(1)`D. `l_(2) m_(2) n_(2)`

Answer» Correct Answer - B
Since, `l_(1), m_(1), n_(1), l_(2), m_(2), n_(2) and l_(3), m_(3), n_(3)` are direction cosines of three mutually perpendicular lines
`:. l_(1)^(2) + m_(1)^(2) + n_(1)^(2) -1, l_(2)^(2) + m_(2)^(2) + n_(2)^(2) = 1`
`l_(3)^(2) + m_(3)^(2) + n_(3)^(2) = 1, l_(1) l_(2) + m_(1) m_(2) + n_(1) n_(2) = 0`
`l_(1) l_(3) + m_(1) m_(3) + n_(1) n_(3) = 0, l_(2) l_(3) + m_(2) m_(3) + n_(2) n_(3) = 0`
Let `Delta = |(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3))|`. Then,
`Delta^(2) = |(l_(1) ,m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3))||(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(3)),(l_(3),m_(3),n_(3))|`
`= |(l_(1)^(2) + m_(1)^(2) + n_(1)^(2),l_(1)l_(2) + m_(1) m_(2) + n_(1) n_(2),l_(1) l_(3) + m_(1) m_(3) + n_(1) n_(3)),(l_(1) l_(2) + m_(1) m_(2) + n_(1) n_(2),l_(1)^(2) + m_(2)^(2) + n_(2)^(2),l_(2) l_(3) + m_(2) m_(3) + n_(2) n_(3)),(l_(1) l_(3) + m_(1) m_(3) + n_(1) n_(3),l_(1) l_(3) + m_(2) m_(3) + n_(2) n_(3),l_(3)^(2) + m_(3)^(2) + n_(3)^(2))|`
`= |(1,0,0),(0,1,0),(0,0,1)| =1`
`:. Delta = +- 1`
74.

Let `lambda` and `alpha` be real. Then the numbers of intergral values `lambda` for which the system of linear equations `lambdax +(sin alpha) y+ (cos alpha) z=0` `x + (cos alpha) y+ (sin alpha) z=0` `-x+(sin alpha) y -(cos alpha) z=0` has non-trivial solutions is

Answer» Correct Answer - D
The given system has non=trivial solution if
`|{:(lambda,,sin alpha,,cos alpha),(1,,cos alpha,,sin alpha),(-1,,sin alpha,,-cos alpha):}|=0`
By expanding the determinant along first column we get
`lambda =sin 2alpha +cos 2alpha`
We know that
`-sqrt(2) le sin 2alpha + cos 2 alpha le sqrt(2)`
`:. -sqrt(2) le lambda le sqrt(2)`
hence integral values of `lambda` are -1 ,0 and 1
75.

`|(1,cos(beta-alpha),cos(gamma-alpha)), (cos(alpha-beta),1,cos(gamma-beta)), (cos(beta-alpha), cos(beta - gamma),1)| = `A. `cos alpha cos beta cos gamma`B. `cos alpha + cos beta + cos gamma`C. 1D. 0

Answer» Correct Answer - D
We have,
`= Delta= |(1,cos (beta- alpha),cos (gamma - alpha)),(cos (alpha - beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)|`
`= |(cos^(2) alpha + sin^(2) alpha,cos beta cos alpha + sin beta alpha,cos alpha cos gamma + sin alpha sin gamma),(cos alpha cos beta + sin alpah sin beta,"cos"^(2)beta + sin^(2) beta,cos beta cos gamma + sin beta sin gamma),(cos alpha cos gamma + sin alpha sin gamma,cos beta cos gamma + sin beta sin gamma,cos^(2) beta + sin^(2) beta)|`
`= |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma,sin gamma,0)|.|(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma,sin gamma,0)| = 0`
76.

The value of `|(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))|`, isA. `y_(1) y_(2) y_(3) z_(1) z_(2) z_(3)`B. `y_(1) + y_(2) + y_(3)`C. `z_(1) + z_(2) + z_(3)`D. 0

Answer» Correct Answer - D
We have,
`|(2 y_(1) z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) + y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))|`
`= |(y_(1) z_(1) + y_(1) z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) + y_(2) z_(1),y_(2) z_(2) + y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),y_(3) z_(3) + y_(3) z_(3))|`
`= |(y_(1),z_(1),0),(y_(2),z_(2),0),(y_(3),z_(3),0)||(z_(1),y_(1),0),(z_(2),y_(2),0),(z_(3),y_(3),0)| = 0 xx 0 = 0`
77.

One root of the equation `|(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 isA. `{(2)/(3), (8)/(3)}`B. `{(2)/(3), (11)/(3)}`C. `{(3)/(2), (8)/(3)}`D. none of these

Answer» Correct Answer - B
Apply `C_(1) to (C_(1) + C_(2) +C_(3))` and take (3x-2) common from `C_(1)`
78.

it `x_(1)^(2) +2y_(1)^(2)+3z_(1)^(2)=x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2)=x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2)=2 " and " x_(2)x_(3) +2y_(2)y_(3)+3z_(2)z_(3)=x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1)=x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2)=1` Then find the value of `|{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`

Answer» Let
`Delta= |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
`:. Delta^(2)= Delta xx Delta`
`=|{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|xx |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
` =(1)/(1xx2xx3) |{:(x_(1),,2y_(1),,z_(1)),(x_(2),,2y_(2),,z_(2)),(x_(3),,2y_(3),,z_(3)):}|xx |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
`= (1)/(6) |{:(x_(1)^(2)+2y_(1)^(2)+3z_(1)^(2),,x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2),,x_(3)x_(1)+2y_(2)y_(3)+3z_(2)z_(3)),(x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2),,x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2),,x_(2)x_(3)+2y_(2)y_(3)+3z_(3)z_(3)),(x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1),,x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2),,):}|`
`=(1)/(6) |{:(2,,1,,1),(1,,2,,1),(1,,1,,2):}|`
`=(2)/(3)`
79.

If the points A(3, -2), B(k, 2) and C(8, 8) are collinear then the value of k isA. 2B. `-3`C. 5D. `-4`

Answer» Correct Answer - C
If `Delta = |[3, -2, 1], [k, 2, 1], [8, 8, 1]|` then we must have `Delta = 0`
80.

Solve the following equations:\(\begin{vmatrix}x-1&x&x-2\\0&x-2&x-3\\0&0&x-3\end{vmatrix}=0\)[(x-1, x, x-2) (0, x-2, x-3) (0, 0, x-3)] = 0

Answer»

\(\begin{vmatrix}x-1&x&x-2\\0&x-2&x-3\\0&0&x-3\end{vmatrix}=0\)

Applying R2 → R2 – R3 , we get

\(\begin{vmatrix}x-1&x&x-2\\0&x-2&0\\0&0&x-3\end{vmatrix}=0\)

∴ (x – 1)(x – 2)(x – 3) – 0] – x(0 – 0) + (x – 2)(0 – 0) = 

∴ (x – 1)(x – 2)(x – 3) = 0 

∴ x — 1 = 0 or x-2 = 0 or x-3 = 0 

∴ x = 1 or x = 2 or x = 3

81.

Solve the following equations.\(\begin{vmatrix}x+2&x+6&x-1\\x+6&x-1&x+2\\x-1&x+2&x+6\end{vmatrix}\)=0[(x+2, x+6, x-1) (x+6, x-1 x+2) (x-1, x+2, x+6)] =0

Answer»

\(\begin{vmatrix}x+2&x+6&x-1\\x+6&x-1&x+2\\x-1&x+2&x+6\end{vmatrix}\)

Applying R2 → R2 – R1 and R3 → R3 – R1 , we get

\(\begin{vmatrix}x+2&x+6&x-1\\4&-7&3\\-3&-4&7\end{vmatrix}=0\)

∴ (x + 2)(- 49 + 12) – (x + 6)(28 + 9) + (x- 1)(- 16 – 21) = 0 

∴ (x + 2) (-37) – (x + 6) (37) + (x – 1) (-37) = 0 

∴ -37(x + 2+ x + 6 + x – 1) = 0 

∴ 3x + 7 = 0

∴ x = -7/3

82.

`|[2a_1b_1, a_1b_2+a_2b_1, a_1b_3+a_3b_1] , [a_1b_2+a_2b_1, 2a_2b_2, a_2b_3+a_3b_2] , [a_1b_3+a_3b_1, a_3b_2+a_2b_3, 2a_3b_3]|=`A. 1B. `-1`C. 0D. `a_(1) a_(2) a_(3) b_(1) b_(2) b_(3)`

Answer» Correct Answer - C
83.

Show that `|{:("sin"10^(@), -"cos"10^(@)), ("sin"80^(@), "cos"80^(@)):}| =1.`

Answer» We have `|{:("sin"10^(@), -"cos"10^(@)), ("sin"80^(@), "cos"80^(@)):}|`
`=("sin"10^(@))("cos" 80^(@)) - ("sin" 80^(@))(-"cos" 10^(@))`
`= ("sin" 10^(@) "cos" 80^(@) + "cos" 10^(@) "sin"80^(@))`
`= "sin" (10^(@) +80^(@)) " "[because "sin" A"cos" B + "cos" A"sin" B = "sin (A+B)]`
`="sin" 90^(@) =1.`
84.

If `|{:(x+1, x-1), (x-3, x+2):}| = |{:(4, -1), (1, 3):}|`, find the value of x.

Answer» We have `|{:(x+1, x-1), (x-3, x+2):}| = |{:(4, -1), (1, 3):}|`
`hArr (x+1) (x+2)-(x-3)(x-1) = (4 xx 3)-1 xx (-1)`
`hArr (x^(2) +3x +2) -(x^(2) -4x +3) = 12+1`
`hArr 7x -1 = 13 hArr 7x = 14 hArr x =2`
Hence, x =2.
85.

If `|{:(3x, 7), (-2, 4):}| = |{:(8, 7), (6, 4):}|`, find the value of x.

Answer» We have `|{:(3x, 7), (-2, 4):}| = |{:(8, 7), (6, 4):}|`
`hArr (3x xx 4) -(-2) xx 7 = (8 xx 4) - (6 xx 7)`
`hArr 12x + 14 = 32-42`
`hArr 12x + 14 =-10`
`hArr 12x =-24 hArr x =-2`
Hence, x = 2.
86.

Examine the consistency of the system of equations`2x - y = 5``x + y = 4`

Answer» Given system of equations,
2x-y=5
x+y=5
`rArr" "[{:(2,-1),(1,1):}][{:(x),(y):}]=[{:(5),(4):}]rArrAX=B`
`therefore" "A[{:(2,-1),(1,1):}]`
`rArr" "|A|[{:(2,-1),(1,1):}]=2-(-1)=3ne0`
`therefore`A is invertible.
`rArr` Given system of equation is consistent.
87.

Let A = [aij] be a square matrix of order 3 × 3 and Cij denote cofactor of aij in A. If |A| = 5, write the value of a31C31 + a32C32 + a33C33.

Answer»

The value of determinant |A|, of matrix A = [aij] of order 3 × 3, is given to be 5.

The value of determinant written in the form of cofactors is equal to the sum of products of elements of that row (or column) multiplied by their corresponding cofactors.

The value of |A| expanded along row 3 will be

|A| = a31 × C31 + a32 × C32 + a33 × C33, which is the required expression

Hence, the value of required expression is equal to |A| = 5.

88.

Show that each of the following systems of linear equations is inconsistent : 2x – y = 5 4x – 2y = 7

Answer»

Given : - 

Two equation 2x – y = 5 and 4x – 2y = 7 

Tip : - We know that 

For a system of 2 simultaneous linear equation with 2 unknowns 

(i) If D ≠ 0, then the given system of equations is consistent and has a unique solution given by

x = \(\frac{D_1}{D}\), y = \(\frac{D_2}{D}\)

(ii) If D = 0 and D1 = D2 = 0, then the system is consistent and has infinitely many solution. 

(iii) If D = 0 and one of D1 and D2 is non – zero, then the system is inconsistent.

Now, 

We have, 

2x – y = 5 

4x – 2y = 7 

Lets find D

⇒ D = \(\begin{vmatrix}2& -1 \\[0.3em]4 &-2 \\[0.3em]\end{vmatrix}\) 

⇒ D = – 4 + 4 

⇒ D = 0 

Again, 

D1 by replacing 1st column by B 

Here,

B = \(\begin{vmatrix}5 \\[0.3em]7\\[0.3em]\end{vmatrix}\)

⇒ D1\(\begin{vmatrix}5& -1 \\[0.3em]7 &-2 \\[0.3em]\end{vmatrix}\) 

⇒ D1 = – 10 + 7 

⇒ D1 = – 3

And, 

D2 by replacing 2nd column by B 

Here,

B = \(\begin{vmatrix}5 \\[0.3em]7\\[0.3em]\end{vmatrix}\)

⇒ D2\(\begin{vmatrix}2& 5 \\[0.3em]4 &7 \\[0.3em]\end{vmatrix}\) 

⇒ D2 = 14 – 20 

⇒ D2 = – 6

So, here we can see that 

D = 0 and D1 and D2 are non – zero 

Hence the given system of equation is inconsistent.

89.

Mark the correct alternative in the following :If \(\begin{vmatrix}2x & 5 \\[0.3em]8 & x \\[0.3em]\end{vmatrix}\) = \(\begin{vmatrix}6 & -2 \\[0.3em]7 & 3 \\[0.3em]\end{vmatrix}\), then x =A. 3 B. ± 3 C. ± 6 D. 6

Answer»

Correct answer : (C)

\(\begin{vmatrix}2x & 5 \\[0.3em]8 & x \\[0.3em]\end{vmatrix}\) = \(\begin{vmatrix}6 & -2 \\[0.3em]7 & 3 \\[0.3em]\end{vmatrix}\) 

2x2 - 40 = 18+14 

x = ± 6

90.

Mark the correct alternative in the following : The value of the determinant \(\begin{vmatrix}a-b &b+c & a \\[0.3em]b-a & c+a & b \\[0.3em]c-a & a+b & c\end{vmatrix}\) isA. a3 + b3 + c3 B. 3bc C. a3 + b3 + c3 – 3abc D. none of these

Answer»

Correct answer : (D)

Assume a = 1,b = 2, c = 3 

(put in determinant)

Δ = \(\begin{vmatrix}-1 & 5& 1 \\[0.3em]1 & 4 &2 \\[0.3em]2 &3&3\end{vmatrix}\)

∆ =[-1(12 - 6) - 5(3 - 4)+1(3 - 6)] 

∆ =- 4 

Put a = 1,b = 2, c = 3 in option A,B,C,D

ANSWER = D (none of these )

91.

If `A`is `a3x3`matrix, `|A|``!=``0`and `|3A|=k|A|`, then write the value of `k`.

Answer» Correct Answer - k = 27
Since A is a `3 xx 3` matrix, so `|3A| = (3 xx 3 xx 3) * |A|`
92.

Manjit wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that if its length is decreased by 50 m and breadth is increased by 50m, then its area will remain same, but if length is decreased by 10m and breadth is decreased by 20m, then its area will decrease by 5300 m2Based on the information given above, answer the following questions:1. The equations in terms of X and Y area. x - y = 50, 2x - y = 550b. x - y = 50, 2x + y = 550c. x + y = 50, 2x + y = 550d. x + y = 50, 2x + y = 5502. Which of the following matrix equation is represented by the given information3. The value of x (length of rectangular field) isa. 150mb. 400mc. 200m y xd. 320m4. The value of y (breadth of rectangular field) isa. 150mb. 200mc. 430m.d. 350m5. How much is the area of rectangular field?a. 60000Sq.mb. 30000Sq.m.c. 30000md. 3000m

Answer»

1. b) x - y = 50, 2x + y = 550

2. a) \(\begin{bmatrix}1&-1\\2&1\end{bmatrix}\)\(\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}50\\550\end{bmatrix}\)

3. c) 200m

4. a) 150m 5. b) 30000Sq.m

93.

If A is a `2 xx 2` matrix such that `|A| ne 0 " and " |A| = 5, ` write the value of |4A|.

Answer» Correct Answer - 80
Since A is a `2 xx 2` matrix, so `|4A| = (4 xx 4) * |A|.`
94.

If A is a 3 × 3 matrix, |A| ≠ 0 and |3A| = k|A| then write value of k.

Answer»

We are given that,

Order of matrix = 3

|A| ≠ 0

|3A| = k|A|

We need to find the value of k.

In order to find k, we need to solve |3A|.

Using property of determinants,

|kA| = kn|A|

Where, order of A is n × n.

Similarly,

|3A| = 33|A|

[∵, order of A is 3]

⇒ |3A| = 27|A| …(i)

As, according to the question

|3A| = k|A|

Using (i),

⇒ 27|A| = k|A|

Comparing the left hand side and right hand side, we get

k = 27

Thus, the value of k is 27.

95.

If A is a 2 × 2 matrix such that |A| ≠ 0 and |A| = 5, write the value of |4A|.

Answer»

It is given that

A is a 2 × 2 matrix

We know that

|4A| = 4. |A|

By substituting the values

|4A| = 16 (5) = 80

96.

If A is a 3 × 3 matrix such that |A| ≠ 0 and |3A| = k|A| then write the value of k.

Answer»

Theorem: If Let A be k × k matrix then |pA|=pk |A|. 

Given: k=3 and p=3. 

|3A|=33 × |A| 

=27|A|. 

Comparing above with k|A| gives k=27.

97.

If A is a 3 × 3 matrix such that |A| ≠ 0 and |3A| = k |A| then write the value of k.

Answer»

It is given that A is a 3 × 3 matrix

We know that

|3A| = k |A|

It can be written as

32 |A| = k |A|

So we get

k = 27

98.

Let A be a square matrix of order 3, write the value of |2A|, where |A| = 4.

Answer»

It is given that A is a square matrix of order 3

So we get

|2A| = 23 . |A|

By substituting the values

|2A| = 8 (4) = 32

99.

Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}0& x & y \\[0.3em]-x & 0 & z \\[0.3em]-y & -z &0\end{vmatrix}\)

Answer»

Let Δ =\(\begin{vmatrix}0& x & y \\[0.3em]-x & 0 & z \\[0.3em]-y & -z &0\end{vmatrix}\) 

Multiplying C1, C2 and C3 with z, y and x respectively we get,

⇒ Δ = \((\frac{1}{xyz})\)\(\begin{vmatrix}0& xy & yx \\[0.3em]-xz & 0 & zx \\[0.3em]-yz & -zy &0\end{vmatrix}\) 

Now, 

Taking y, x and z common from R1,R2 and R3 gives,

⇒ Δ = \((\frac{1}{xyz})\)\(\begin{vmatrix}0& x & x \\[0.3em]-z & 0 & z \\[0.3em]-y & -y &0\end{vmatrix}\) 

Applying C2 → C2 – C3 gives,

⇒ Δ = \((\frac{1}{xyz})\)\(\begin{vmatrix}0& x & x \\[0.3em]-z & -z & z \\[0.3em]-y & -y &0\end{vmatrix}\) 

As, 

C1 = C2

Therefore determinant is zero.

100.

Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}2& 3 & 7 \\[0.3em]13& 17 &5 \\[0.3em]15 &20 & 12\end{vmatrix}\)

Answer»

Let Δ = \(\begin{vmatrix}2& 3 & 7 \\[0.3em]13& 17 &5 \\[0.3em]15 &20 & 12\end{vmatrix}\) 

Applying C3 → C3 – C2, gives

⇒ Δ = \(\begin{vmatrix}2& 3 & 7 \\[0.3em]13& 17 &5 \\[0.3em]2 &3 & 7\end{vmatrix}\) 

As, 

R1 = R3

So value so determinant is zero.