1.

Solve the following equations:\(\begin{vmatrix}x-1&x&x-2\\0&x-2&x-3\\0&0&x-3\end{vmatrix}=0\)[(x-1, x, x-2) (0, x-2, x-3) (0, 0, x-3)] = 0

Answer»

\(\begin{vmatrix}x-1&x&x-2\\0&x-2&x-3\\0&0&x-3\end{vmatrix}=0\)

Applying R2 → R2 – R3 , we get

\(\begin{vmatrix}x-1&x&x-2\\0&x-2&0\\0&0&x-3\end{vmatrix}=0\)

∴ (x – 1)(x – 2)(x – 3) – 0] – x(0 – 0) + (x – 2)(0 – 0) = 

∴ (x – 1)(x – 2)(x – 3) = 0 

∴ x — 1 = 0 or x-2 = 0 or x-3 = 0 

∴ x = 1 or x = 2 or x = 3



Discussion

No Comment Found