1.

Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}0& x & y \\[0.3em]-x & 0 & z \\[0.3em]-y & -z &0\end{vmatrix}\)

Answer»

Let Δ =\(\begin{vmatrix}0& x & y \\[0.3em]-x & 0 & z \\[0.3em]-y & -z &0\end{vmatrix}\) 

Multiplying C1, C2 and C3 with z, y and x respectively we get,

⇒ Δ = \((\frac{1}{xyz})\)\(\begin{vmatrix}0& xy & yx \\[0.3em]-xz & 0 & zx \\[0.3em]-yz & -zy &0\end{vmatrix}\) 

Now, 

Taking y, x and z common from R1,R2 and R3 gives,

⇒ Δ = \((\frac{1}{xyz})\)\(\begin{vmatrix}0& x & x \\[0.3em]-z & 0 & z \\[0.3em]-y & -y &0\end{vmatrix}\) 

Applying C2 → C2 – C3 gives,

⇒ Δ = \((\frac{1}{xyz})\)\(\begin{vmatrix}0& x & x \\[0.3em]-z & -z & z \\[0.3em]-y & -y &0\end{vmatrix}\) 

As, 

C1 = C2

Therefore determinant is zero.



Discussion

No Comment Found