

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
251. |
If w is a complex cube root of unity. `|(a,b,c),(b,c,a),(c,a,b)| = -(a +b +c) (a + bk + ck^(2)) (a + bk^(2) + ck)`, then k equalsA. 1B. `-1`C. `omega`D. `-omega` |
Answer» Correct Answer - C We have, `|(a,b,c),(b,c,a),(c,a,b)|` `= |(a +b +c,b,c),(a +b +c,c,a),(a +b +c,a,b)| " " ["Applying " C_(1) rarr C_(1) + C_(2) + C_(3)]` `= (a +b +c) |(1,b,c),(1,c,a),(1,a,b)|` `= (a +b +c) |(1,b,c),(0,c -b,a -c),(0,a -b,b-c)| " " [("Applying" R_(2) rarr R_(2) - R_(1)),(" "R_(3) rarr R_(3) - R_(1))]` `= (a +b +c) |(c -b,a -c),(a -b,b -c)|` `= (a +b +c) (-b^(2) -c^(2) -a^(2) + ac + ab + bc - 2bc)` `= -(a + b+c) (a^(2) +b^(2) + c^(2) -ab - bc - ca)` `= - (a +b +c) (a + bomega + c omega^(2)) (a + b omega^(2) + c omega)` `:. k = w` |
|
252. |
If `a+b+c=0,`one root of `|a-x c b c b-x a b a c-x|=0`is`x=1`b. `x=2`c. `x=a^2+b^2+c^2`d. `x=0`A. `x=1`B. `x=2`C. `x=a^(2)+b^(2)+c^(2)`D. `x=0` |
Answer» Correct Answer - D Operating `C_(1) to C_(1) +C_(2) +C_(3) `we get `(a+b+c-x) |{:(1,,c,,b),(1,,b-x,,a),(1,,a,,c-x):}|=0` `:. x=a+ b+c=0` |
|
253. |
If `alpha, beta and gamma` are the roots of the equation `x^(3) + px + q = 0` (with `p != 0 and p != 0 and q != 0`), the value of the determinant `|(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|`, isA. pB. qC. `p^(2) - 2q`D. none of these |
Answer» Correct Answer - D It is given that `alpha, beta, gamma` are the roots of the given equations. `:. alpha + beta + gamma = 0`. So, `Delta = |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|` `Delta = |(alpha + beta + gamma,beta,gamma),(alpha + beta + gamma,gamma,alpha),(alpha + beta + gamma,alpha,beta)| " " [ " Using" C_(1) rarr C_(2) + C_(2) + C_(3)]` `Delta = |(0,beta,gamma),(0,gamma,alpha),(0,alpha,beta)| [ :. alpha + beta + gamma = 0]` |
|
254. |
`|[1,bc,b+c],[1,ca,c+a],[1,ab,a+b]|=|[1,a,a^2],[1,b,b^2],[1,c,c^2]|` |
Answer» Applying `C_(3) to C_(3) - (a + b +c)C_(1)`, we get `RHS = |[1, bc, -a], [1, ca, -b], [1, ab, -c]| = |[1, c, bc],[1, b, ca],[1, c, ab]|` ` = (1)/(abc) * |[a, a^(2), abc], [b, b^(2), abc], [c, c^(2), abc]| = |[a, a^(2), 1], [b, b^(2), 1], [c, c^(2), 1]| = |[1, a, a^(2)], [1, b, b^(2)], [1, c, c^(2)]| = LHS.` |
|
255. |
if w is a complex cube root to unity then value of ` Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}|` is |
Answer» Correct Answer - A `Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)hat(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)hat(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)hat(w)):}|` `" Operating " C_(2) to wC_(2) ` we have `Delta =(1)/(w) |{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)hat(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)hat(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)hat(w)):}|` `=(1)/(w)|{:(a_(1)+b_(1)w,,a_(1)+b_(1)w,,c_(1)+b_(1)hat(w)),(a_(2)+b_(2)w,,a_(2)+b_(2)w,,c_(2)+b_(2)hat(w)),(a_(3)+b_(3)w,,a_(3)+b_(3)w,,c_(3)+b_(3)hat(w)):}|` `=0` |
|
256. |
If `D = |(1,1,1),(1,1 +x,1),(1,1,1 +y)| " for " x!= 0, y != 0`, then D is divisible byA. x but not yB. y but not xC. neither x nor yD. both x and y |
Answer» Correct Answer - D | |
257. |
Prove `|(1+a,1,1),(1,1+b,1),(1,1,1+c)|=abc(1/a+1/b+1/c+1)` |
Answer» `L.H.S. = |[1+a,1,1],[1,1+b,1],[1,1,1+c]|` Applying `C_1->C_1-C_2` `=>|[a,1,1],[-b,1+b,1],[0,1,1+c]|` Applying `C_2->C_2-C_3` `=>|[a,0,1],[-b,b,1],[0,-c,1+c]|` `=>[a(b+bc+c)+1(bc)]` `=> ab+abc+ac+bc` `=>abc+bc+ac+ab` `=>abc(1+1/a+1/b+1/c) = R.H.S.` |
|
258. |
Let `Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^(2)+ab,,b^(2)+ab,,-ab):}|` and the equation `px^(3) +qx^(2) +rx+s=0` has roots a,b,c where `a,b,c in R^(+)` `" if " Delta =27 " and " a^(2) +b^(2)+c^(2) =3`thenA. `3p+2q=0`B. `4p+3q=0`C. `3p+q=0`D. none of these |
Answer» Correct Answer - C Multiplying `R_(1) ,R_(2),R_(3) " by " a,b,c ` respectively ,and then taking a,b,c common from` C_(1),C_(2)" and " C_(3)` we get `Delta = |{:(-bc,,ab+ac,,ac+ab),(ab+bc,,-ac,,bc+ab),(ac+bc,,bc+ac,,-ab):}|` Now using `C_(2) to C_(2)-C_(1)" and " C_(3) to C_(3) -C_(1) ` and then taking (ab+bc+ca) common from `C_(2) " and " C_(3)` we get `Delta =|{:(-bc,,1,,1),(ab+bc,,-1,,0),(ac+bc,,0,,-1):}|xx (ab +bc +ca)^(2)` Now applying `R_(2) to R_(2) +R_(1)` we get `Delta = |{:(-bc,,1,,1),(ab,,0,,1),(ac+bc,,0,,-1):}| (ab+bc+ca)^(2)` Expanding along `c_(2)` we get `Delta =(ab+bc+ca)^(2)[ac+bc+ca)^(2)` `=(ab+bc+ca)^(2)` `=(r//p)^(3) =r^(3)//p^(3)` Now given a,b,c are all positive then `A.M ge G.M.` `rArr (ab+bc+ac)/(3) ge (abxx bcxx ac)^(1//3)` `" or " (ab+bc+ac)^(3) ge 27a^(2)b^(2)c^(2)` `" or " (ab+bc+ca)^(3) ge 27(s^(2)//p^(2))` if `Delta =27` then ab+bc+ca =3 and given that `a^(2) +b^(2)+c^(2)=3` From `(a+b+c)^(2) =a^(2) +b^(2)+c^(2) +2 (ab+bc+ca)` we have `a+b+c = ne 3` `rArr a+b+c =3` `rArr 3p+q=0` |
|
259. |
`|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =` |
Answer» Correct Answer - A | |
260. |
If `|(x +a,b,c),(a,x +b,c),(a,b,x +c)| = 0`, then x equalsA. `a + b +c`B. `-(a +b +c)`C. `0, a + b+ c`D. `0, -(a + b+c)` |
Answer» Correct Answer - D | |
261. |
The value of the deterimant `|(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20)|` is equal to |
Answer» Correct Answer - C | |
262. |
Prove that `|[1,a,bc] , [1,b,ca], [1,c,ab]|=|[1,a,a^2] , [1,b,b^2] , [1,c,c^2]|` |
Answer» Applying `R_(1) to aR_(1), R_(2) -R_(1) "and"R_(3) to cR_(3)`, we get LHS `=(1)/(abc) * |[a, a^(2), abc], [b, b^(2), abc], [c, c^(2), abc]| = |[a, a^(2), 1], [b, b^(2), 1], [c, c^(2), 1]| = |[1, a, a^(2)], [1, b, b^(2)], [1, c, c^(2)]|` |
|
263. |
If A, B and C are the angles of a triangle and `|(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0`, then the triangle ABC isA. isoscelesB. equilateralC. right angled isoscelesD. none of these |
Answer» Correct Answer - A | |
264. |
If `alpha, beta & gamma` are the roots of the equation `x^3+px+q=0`, then the value of the determinant `|(alpha,beta,gamma), (beta,gamma,alpha),(gamma,alpha,beta)|` is |
Answer» `alpha[gammabeta-alpha^2]-beta[beta^2-gammaalpha]+gamma[betaalpha-gamma^2]` `3alphabetagamma-alpha^3-beta^3-gamma^3` `3alphabetagamma-(3alphabetagamma)`. |
|
265. |
If `|[1,x,x^2] , [x,x^2,1] , [x^2,1,x]|=3` then find the value of `|[x^3-1, 0, x-x^4] , [0,x-x^4, x^3-1] , [x-x^4, x^3-1, 0]|` |
Answer» ` Delta_(c)=|{:(x^(3)-1,,0,,x-x^(4)),(0,,x-x^(4),,x^(3)-1),(x-x^(4)-1,,x^(3)-1,,0):}|` is the determinant formed by the cofactors of determinant `Delta = |{:(1,,x,,x^(2)),(x,,x^(2),,1),(x^(2),,1,,x):}|` Hence `Delta_(c) =Delta^(2) =3^(2) =9`. |
|
266. |
Prove that `|(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ca,c^3)|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)` |
Answer» `Delta = |[1, a^(2), a^(3)], [1, b^(2), b^(3)], [1, c^(2), c^(3)]| + |[1, bc, a^(3)], [1, ca, b^(3)], [1, ab, c^(3)]|` | |
267. |
Consider the system of equations `(a -1) x -y -z = 0` `x -(b -1) y +z = 0` `x + y - (c -1) z = 0` Where a, b and c are non-zero real number Statement1 : If x,y,z are not all zero, then `ab + bc + ca + abc` Statement 2 : `abc ge 27`A. Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 3B. Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 3C. Statement 1 is true, Statement 2 is FalseD. Statement 1 is False, Statement 2 is true |
Answer» Correct Answer - B It is given that x,y,z are not all zero. So, the given system of equation has a non-trivial solutions. `:. |(a -1,-1,-1),(1,-(b -1),1),(1,1,-(c -1))| = 0` `rArr |(a,0,-1),(0,-b,1),(c,c,1-c)| = 0 " " [("Applying " C_(1) rarr C_(1) - C_(3)),(C_(2) rarr C_(2) - C_(3))]` `rArr a(-b + bc -c) - (0 + bc) = 0` `rArr ab + bc + ac = abc` Using `A.M. ge G.M`., we have `(ab + bc + ca)/(3) ge (abc)^(2//3)` `rArr abc ge 3 (abc)^(2//3) rArr abc ge 27` So, both statements are true |
|
268. |
`" If " Delta (x)=|underset(9" "x" "-7)underset(6" "4x" "3)(1" "x^(2)" "x^(2))|` then find the value of `overset(1)underset(0)(int)Delta (x) dx` without expanding `Delta (x)`. |
Answer» Taking x common from `C_(2)` then multiplying each element of `R_(1)` with x we get `:. Delta (x)= |{:( x,,x^(2),,x^(3)),(6,,4,,3),(9,,1,,-7):}|` `|{:(overset(1)underset(0)(int) xdx,,overset(1)underset(0)(int)x^(2)dx,,overset(1)underset(0)(int)x^(3)dx),(6,,4,,3),(9,,1,,-7):}|` `|{:([[x^(2))/(2)]_(0)^(2),,[[x^(3))/(3)]_(0)^(1),,[[x^(4))/(4)]_(0)^(1)),(6,,4,,3),(9,,1,,-7):}|` `= |{:(9,,1,,-7),(6,,4,,3),((1)/(2),,(1)/(3),,(1)/(4)):}|` `=(1)/(12) |{:(6,,4,,3),(6,,4,,3),(9,,1,,-7):}|` (Multiplying each element of `R_(1)` with 12) `=0" "(R_(1) " and "R_(2) " are identical")` |
|
269. |
Show that `|{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}|` `|{:(a^(2),,c^(2),,2ca-b^(2)),(2ab-c^(2),,b^(2),,a^(2)),(b^(2),,2ac-a^(2),,c^(2)):}|.` |
Answer» `|{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}|` is formed by the cofactors of matrix `|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|`. `rArr |{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}|= |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|^(2)` `|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}||{:(a,,-c,,b),(b,,-a,,c),(c,,-b,,a):}|^(2)` `|{:(a^(2),,c^(2),,2ca-b^(2)),(2ab-c^(2),,b^(2),,a^(2)),(b^(2),,2ac-a^(2),,c^(2)):}|.` |
|
270. |
if `x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0` then `x^(-1) +y^(-1) +z^(-1)` is equal toA. `-1`B. `-2`C. `-3`D. none of these |
Answer» Correct Answer - C `|{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,3+3z):}|` `=xyz |{:(1+(1)/(x),,(1)/(x),,(1)/(x)),(1+(1)/(y),,2+(1)/(y),,(1)/(y)),(1+(1)/(z),,1+(1)/(z),,3+(1)/(z)):}|` `=xyz (3+(1)/(x)+(1)/(y)+(1)/(z)) |{:(1+(1)/(x),,(1)/(x),,(1)/(x)),(1+(1)/(y),,2+(1)/(y),,(1)/(y)),(1+(1)/(z),,1+(1)/(z),,3+(1)/(z)):}|` `=xyz (3+(1)/(x)+(1)/(y)+(1)/(z)) |{:(1,,0,,0),(1+(1)/(y),,1,,-1),(1+(1)/(z),,0,,2):}|` `=2xyz (3+(1)/(x)+(1)/(y)+(1)/(z)) ` Hence the given equation gives `x^(-1) +y^(-1) +z^(-1) =-3` |
|
271. |
the determinant `Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]|` is divisible byA. xB. `x^(2)`C. `x^(3)`D. none of these |
Answer» Correct Answer - A::B `Delta =|{:(a^(3)+ax,,ab,,ac),(a^(2)b,,b^(2)+x,,bc),(a^(2)c,,bc,,c^(2)+x):}|` Applying `C_(1) to C_(1) +bC_(2) +cC_(3)" and taking " a^(2)+b^(2)+c^(2)+x` common we get `Delta =(1)/(a)(a^(2) +b^(2) +c^(2)+x ) |{:(a,,ab,,ac),(b,,b^(2)+x,,bc),(c,,bc,,c^(2)+x):}|` Applying `C_(2) to C_(2) -bC_(1) " and " C_(3) to C_(3) -cC_(1) ` we get `Delta =(1)/(a) (a^(2) +b^(2)+c^(2)+x) |{:(a,,0,,0),(b,,x,,0),(c,,0,,x):}|` `=(1)/(a) (a^(2) +b^(2)+c^(2) +x) (ax^(2))` `= x^(2) (a^(2) +b^(2)+c^(2) +x)` Thus `Delta ` is divisible by x and `x^(2)` |
|
272. |
`|[(a+1)(a+2), a+2, 1], [(a+2)(a+3), a+3, 1], [(a+3)(a+4), a+4, 1]| =-2` |
Answer» `Delta = |[a^(2) + 3a+2, a+2, 1], [a^(2) +5a +6, a+3, 1], [a^(2) +7a +12, a+4, 1]|` Now, apply `R_(2) to R_(2) -R_(1) "and"R_(3) to R_(3) -R_(1)` |
|
273. |
Let D be the determinant given by `D = |(1,cos (beta - alpha),cos (gamma - alpha)),(cos (alpha -beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)|` where `alpha, beta and gamma` are real number Statement -1: The value of D is zero Statement 2: The determinant D is expressible as the product of two determinant each equal to zeroA. Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 2B. Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 2C. Statement 1 is true, Statement 2 is FalseD. Statement 1 is False, Statement 2 is true |
Answer» Correct Answer - A We have, `D = |(1,cos (beta - alpha),cos (gamma - alpha)),(cos (alpha - beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)|` `= |(cos^(2) alpha + sin^(2) alpha,cos beta cos alpha + sin beta sin alpha,cos gamma cos alpha + sin gamma sin alpha),(cos alpha cos beta + sin alpha sin beta,cos^(2) beta + sin^(2) beta,cos gamma cos beta + sin gamma sin beta),(cos alpha cos gamma + sin alpha sin gamma,cos beta cos gamma + sin beta sin gamma,cos^(2) gamma + sin^(2) gamma)|` `= |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma ,sin gamma,0)| |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma,sin gamma,0)|= 0` So, both the statement are true and statement 2 is a correct explanation for statement 1 |
|
274. |
`|(y+z,z,y),(z,z+x,x),(y,x,x+y)|-4xyz` |
Answer» Given determinant `=|{:(y+z, " "z, y),(" "z, z+x,x), (" "y, " "x, x+y):}|` `=|{:(0, -2x, -2x),(z, z+x," "x), (y, " "x, x+y):}| [R_(1) to R_(1) -(R_(2) + R_(3))]` `=(-2x)*|{:(0, 1, 1),(z, z+x," "x), (y, " "x, x+y):}| ["taking(-2x) common from"R_(1)]` `=(-2x)*|{:(0, 0, " "1),(z, z," "x), (y, -y, x+y):}| [C_(2) to (C_(2) -C_(3))]` `=(-2x)*1*|{:(z,z),(y,-y):}| ["expanded by"R_(1)]`d `=(-2x)*1*(-yz-yz) =(-2x)(-2yz) = 4xyz.` |
|
275. |
Prove that : `Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)` |
Answer» Take x, y and z common from `C_(1), C_(2), C_(3)` respectively | |
276. |
15. Using properties of determinants, prove the following `|[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|`=`a^3+b^3+c^3-3abc` |
Answer» Let the value of the given determinant be `Delta`. Then, `Delta = |{:(a, b, c),(a-b, b-c, c-a),(b+c, c+a, a+b):}|` `= |{:(a+b+c, " "b, " "c),(" "0, b-c, c-a),(2(a+b+c), c+a, a+b):}| " "[C_(1) to (C_(1) + C_(2) + C_(3))]` `= (a+b+c)*|{:(1, " "b, " "c),(0, b-c, c-a),(2, c+a, a+b):}| " "["taking(a+b+c) common from"C_(1)]` `= (a+b+c)*|{:(1, " "b, " "c),(0, b-c, c-a),(0, c+a-2b, a+b-2c):}| " "[R_(3) to R_(3)-2R_(1)]` `= (a+b+c)*1*|{:(b-c, c-a),(c+a-2b, a+b-2c):}| " "["expanded by"C_(1)]` `= (a+b+c)*|{:(b-c, c-a),(a-b, b-c):}| [R_(2) to R_(2) + R_(1)]` `=(a+b+c) * [(b-c)^(2) - (a-b)(c-a)]` ` =(a+b+c)(a^(2) +b^(2) +c^(2)-ab-bc-ca)` `=(a^(3) +b^(3) + c^(3) -3abc)` Hence, `Delta = (a^(3) +b^(3) +c^(3) -3abc)` |
|
277. |
Show that `|[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)` |
Answer» `L.H.S. = |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|` `= (abc)|[1,1,1],[a,b,c],[a^2,b^2,c^2]|` Applying `C_1->C_1-C_3 and C_2->C_2-C_3` `= (abc)|[0,0,1],[a-b,b-c,c],[a^2-b^2,b^2-c^2,c^2]|` `= (abc)(a-b)(b-c)|[0,0,1],[1,1,c],[a+b,b+c,c^2]|` `= (abc)(a-b)(b-c)[b+c-a-b]` `= (abc)(a-b)(b-c)(c-a) = R.H.S.` |
|
278. |
Prove `|(y+z,z+x,x+y),(z+x,x+y,y+z),(x+y,y+z,z+x)|=2|(x,y,z),(y,z,x),(z,x,y)|=-2(x^3+y^3+z^3-3xyz)` |
Answer» `L.H.S. = |[y+z,z+x,x+y],[z+x,x+y,y+z],[x+y,y+z,z+x]|` `=|[y,z,x],[z,x,y],[x,y,z]|+|[z,x,y],[x,y,z],[y,z,x]|` `=(-1)|[y,x,z],[z,y,x],[x,z,y]|+(-1)|[x,z,y],[y,x,z],[z,y,x]|` `=(-1)^2|[x,y,z],[y,z,x],[z,x,y]|+(-1)^2|[x,y,z],[y,z,x],[z,x,y]|` `=|[x,y,z],[y,z,x],[z,x,y]|+|[x,y,z],[y,z,x],[z,x,y]|` `=2|[x,y,z],[y,z,x],[z,x,y]|` ...(first part proved) `=2[x(zy-x^2)-y(y^2-zx)+z(yx-z^2)]` `=2[3xyz-x^3-y^3-z^3]` `=-2(x^3+y^3+z^3-3xyz) = R.H.S.` |
|
279. |
`[[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]] = 3abc - a^3 - b^3 - c^3` |
Answer» `L.H.S. = |[b+c,a-b,a],[c+a,b-c,b],[a+b,c-a,c]|` Applying `C_2->C_2-C_3` `= |[b+c,-b,a],[c+a,-c,b],[a+b,-a,c]|` Applying `C_1->C_+C_2` `= |[c,-b,a],[a,-c,b],[b,-a,c]|` `=-1 |[c,b,a],[a,c,b],[b,a,c]|` `= - 1[c^3-abc - bac+b^3 + a^3 - abc]` `= 3abc - a^3-b^3-c^3 = R.H.S.` |
|
280. |
Find x, if \(\begin{vmatrix}x - 1& x - 2\\[0.3em]x & x - 3\end{vmatrix} = 0\) |
Answer» \(\begin{vmatrix}x - 1& x - 2\\[0.3em]x & x - 3\end{vmatrix} = 0\) ⇒ (x – 1) (x – 3) – x(x – 2) = 0 ⇒ x2 – 3x – x + 3 – x2 + 2x = 0 ⇒ -2x + 3 = 0 ⇒ – 2x = -3 So, x = 3/2 |
|
281. |
Prove that : \(\begin{vmatrix}1&a&b\\[0.3em]-a&1&c\\[0.3em]-b&-c&1\end{vmatrix}\) = 1 + a2 + b2 + c2 |
Answer» \(\begin{vmatrix}1&a&b\\[0.3em]-a&1&c\\[0.3em]-b&-c&1\end{vmatrix}\) = 1(1 + c2) - a(- a + bc) + bc(ac + b) = 1 + c2 + a2 – abc + abc + b2 = 1 + a2 + b2 + c2 = R.H.S. Proved. |
|
282. |
If \(\begin{vmatrix}l&m\\[0.3 em]2&3\end{vmatrix} = 0\), then find l:m |
Answer» \(\begin{vmatrix}l&m\\[0.3 em]2&3\end{vmatrix} = 0\) ⇒ l x 3 – 2 x m = 0 ⇒ 3l – 2m= 0 ⇒ 3l = 2m ⇒ l/m = 2/3 So, l : m = 2 : 3 |
|
283. |
Evaluate \( \begin{vmatrix} cos a & -sin a\\[0.3em] sin a & cos a \\[0.3em] \end{vmatrix}\) Evaluate |(cos a, -sin a)(sin a, cos a)| |
Answer» After finding determinant we will get a trigonometric identity. cos2α +sin2α =1 ∵ sin2θ + cos2θ = 1 |
|
284. |
Evaluate \( \begin{vmatrix} sin 60 ^\circ& cos 60^\circ\\[0.3em] -sin 30^\circ & cos30^\circ \\[0.3em] \end{vmatrix}\) Evaluate |(sin60°, cos60°) (-sin 30° cos 30°)| |
Answer» After finding determinant we will get, Sin60° = \(\frac{\sqrt{3}}{2}\) = cos 30° Cos60° = \(\frac{1}{2}\) = sin30° sin 60° × cos30° + sin30° × cos60° = \(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2}\) = \(\frac{3}{4} + \frac{1}{4}\) = 1. |
|
285. |
Evaluate \( \begin{bmatrix} cos 65 ^\circ & sin 65^\circ\\[0.3em] sin 25^\circ & cos 25^\circ\\[0.3em] \end{bmatrix}\). Evaluate |(cos 65° sin 65°)(sin25°, cos 25°)| |
Answer» By directly opening this determinant cos65° × cos25° -sin25° × sin65° = cos(65°+25°) ∵ cosAcosB - sinAsinB = cos(A+B) = cos90° = 0 ∵ cosAcosB - sinAsinB = cos(A+B) |
|
286. |
Evaluate the following determinants :i. \(\begin{vmatrix}x &-7 \\[0.3em]x & 5x+1 \\[0.3em]\end{vmatrix}\)ii. \(\begin{vmatrix}cos\,\theta &-sin\,\theta \\[0.3em]sin\,\theta & cos\,\theta \\[0.3em]\end{vmatrix}\)iii. \(\begin{vmatrix}cos\,15° &-sin\,15° \\[0.3em]sin\,75° & cos\,75° \\[0.3em]\end{vmatrix}\)iv. \(\begin{vmatrix}a+ib &c+id \\[0.3em]-c+id & a-ib \\[0.3em]\end{vmatrix}\) |
Answer» i. Let A = \(\begin{vmatrix} x &-7 \\[0.3em] x & 5x+1 \\[0.3em] \end{vmatrix}\) ⇒ |A| = x(5x + 1) – (–7)x |A| = 5x2 + 8x ii. Let A = \(\begin{vmatrix} cos\,\theta &-sin\,\theta \\[0.3em] sin\,\theta & cos\,\theta \\[0.3em] \end{vmatrix}\) ⇒ |A| = cosθ × cosθ – (–sinθ) x sinθ |A| = cos 2θ + sin 2θ |A| = 1 iii. Let A = \(\begin{vmatrix} cos\,15° &-sin\,15° \\[0.3em] sin\,75° & cos\,75° \\[0.3em] \end{vmatrix}\) ⇒ |A| = cos15° × cos75° + sin15° x sin75° |A| = cos(75 – 15)° |A| = cos60° |A| = 0.5. iv. A = \(\begin{vmatrix} a+ib &c+id \\[0.3em] -c+id & a-ib \\[0.3em] \end{vmatrix}\) ⇒ |A| = (a + ib)( a – ib) – (c + id)( –c + id) = (a + ib)( a – ib) + (c + id)( c – id) = a2 – i2 b2 + c2 – i2 d2 = a2 – (–1)b2 + c2 – (–1)d2 = a2 + b2 + c2 + d2 |
|
287. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case : A = \(\begin{bmatrix} 1&-3 & 2 \\[0.3em] 4 & -1 & 2 \\[0.3em] 3 & 5 & 2 \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix} 1&-3 & 2 \\[0.3em] 4 & -1 & 2 \\[0.3em] 3 & 5 & 2 \end{bmatrix}\) ⇒ M11 = \(\begin{bmatrix} -1&2 \\[0.3em] 5 & 2 \\[0.3em] \end{bmatrix}\) M11 = –1 × 2 – 5 × 2 M11 = –12 ⇒ M21 = \(\begin{bmatrix} -3&2 \\[0.3em] 5 & 2 \\[0.3em] \end{bmatrix}\) M21 = –3 × 2 – 5 × 2 M21 = –16 ⇒ M31 = \(\begin{bmatrix} -3&2 \\[0.3em] -1 & 2 \\[0.3em] \end{bmatrix}\) M31 = –3 × 2 – (–1) × 2 M31 = – 4 C11 = (–1)1+1 × M11 = 1 × –12 = –12 C21 = (–1)2+1 × M21 = –1 × –16 = 16 C31 = (–1)3+1 × M31 = 1 × –4 = –4 Now expanding along the first column we get, |A| = a11 × C11 + a21× C21+ a31× C31 = 1× (–12) + 4 × 16 + 3× (–4) = –12 + 64 –12 = 40 |
|
288. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix} -1&4 \\[0.3em] 2 & 3 \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix} -1&4 \\[0.3em] 2 & 3 \end{bmatrix}\) M11 = 3 M21 = 4 C11 = (–1)1+1 × M11 = 1 × 3 = 3 C21 = (–1)2+1 × 4 = –1 × 4 = –4 Now expanding along the first column we get |A| = a11 × C11 + a21× C21 = –1× 3 + 2 × (–4) = –11 |
|
289. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix} 5&20 \\[0.3em] 0 & -1 \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix}5&20 \\[0.3em]0 & -1\end{bmatrix}\) M11 = –1 M21 = 20 C11 = (–1)1+1 × M11 = 1 × –1 = –1 C21 = (–1)2+1 × M21 = 20 × –1 = –20 Now expanding along the first column we get, |A| = a11 × C11 + a21× C21 = 5× (–1) + 0 × (–20) = –5 |
|
290. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix}2 &-1 & 0 &1 \\[0.3em]-3 & 0 & 1&-2 \\[0.3em]1 & 1 &-1&1\\[0.3em]2 & -1 &5&0\end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix}2 &-1 & 0 &1 \\[0.3em]-3 & 0 & 1&-2 \\[0.3em]1 & 1 &-1&1\\[0.3em]2 & -1 &5&0\end{bmatrix}\) ⇒ M11 = \(\begin{bmatrix}0 &1 & -2 \\[0.3em]1 & -1 & 1 \\[0.3em]-1 & 5 &0\\[0.3em]\end{bmatrix}\) M11 = 0(–1×0 – 5×1) – 1(1×0 – (–1)×1) + (–2)(1×5 – (–1)×(–1)) M11 = – 9 ⇒ M21 = \(\begin{bmatrix}-1 &0 & 1 \\[0.3em]1 & -1 & 1 \\[0.3em]-1 & 5 &0\\[0.3em]\end{bmatrix}\) M21 = –1(–1×0 – 5×1) – 0(1×0 – (–1)×1) + 1(1×5 – (–1)×(–1)) M21 = 9 ⇒ M31 = \(\begin{bmatrix}-1 &0 & 1 \\[0.3em]0 & 1 & -2 \\[0.3em]-1 & 5 &0\\[0.3em]\end{bmatrix}\) M31 = –1(1×0 – 5×(–2)) – 0(0×0 – (–1)×(–2)) + 1(0×5 – (–1)×1) M31 = – 9 ⇒ M41 = \(\begin{bmatrix}-1 &0 & 1 \\[0.3em]0 & 1 & -2 \\[0.3em]-1 & -1 &1\\[0.3em]\end{bmatrix}\) M41 = –1(1×1 – (–1)×(–2)) – 0(0×1 – 1×(–2)) + 1(0×(–1) – 1×1) M41 = 0 C11 = (–1)1+1 × M11 = 1 × (–9) = –9 C21 = (–1)2+1 × M21 = –1 × 9 = –9 C31 = (–1)3+1 × M31 = 1 × –9 = –9 C41 = (–1)4+1 × M41 = –1 × 0 = 0 Now expanding along the first column we get |A| = a11 × C11 + a21× C21+ a31× C31 + a41× C41 = 2× (–9) + (–3) × –9 + 1× (–9) + 2× 0 = – 18 + 27 – 9 = 0 |
|
291. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix} 1&a & bc \\[0.3em] 1 & b & ca \\[0.3em] 1 & c & ab \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix} 1&a & bc \\[0.3em] 1 & b & ca \\[0.3em] 1 & c & ab \end{bmatrix}\) ⇒ M11 = \(\begin{bmatrix} b&ca \\[0.3em] c & ab \\[0.3em] \end{bmatrix}\) M11 = b × ab – c × ca M11 = ab2 – ac2 ⇒ M21 = \(\begin{bmatrix} a&bc \\[0.3em] c & ab \\[0.3em] \end{bmatrix}\) M21 = a × ab – c × bc M21 = a2b – c2b ⇒ M31 = \(\begin{bmatrix} a&bc \\[0.3em] b & ca \\[0.3em] \end{bmatrix}\) M31 = a × ca – b × bc M31 = a2c – b2c C11 = (–1)1+1 × M11 = 1 × (ab2 – ac2) = ab2 – ac2 C21 = (–1)2+1 × M21 = –1 × (a2b – c2b) = c2b – a2b C31 = (–1)3+1 × M31 = 1 × (a2c – b2c) = a2c – b2c Now expanding along the first column we get |A| = a11 × C11 + a21× C21+ a31× C31 = 1× (ab2 – ac2) + 1 × (c2b – a2b) + 1× (a2c – b2c) = ab2 – ac2 + c2b – a2b + a2c – b2c |
|
292. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix} 0&2 & 6 \\[0.3em] 1 & 5 & 0 \\[0.3em] 3 & 7 & 1 \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix} 0&2 & 6 \\[0.3em] 1 & 5 & 0 \\[0.3em] 3 & 7 & 1 \end{bmatrix}\) ⇒ M11 = \(\begin{bmatrix} 5 & 0 \\[0.3em] 7 &1\\[0.3em] \end{bmatrix}\) M11 = 5 × 1 – 7 × 0 M11 = 5 ⇒ M21 = \(\begin{bmatrix}2 & 6 \\[0.3em] 7 &1\\[0.3em] \end{bmatrix}\) M21 = 2× 1 – 7 × 6 M21 = – 40 ⇒ M31 = \(\begin{bmatrix}2 & 6 \\[0.3em] 5 &0\\[0.3em] \end{bmatrix}\) M31 = 2×0 – 5×6 M31 = –30 C11 = (–1)1+1 × M11 = 1 × 5 = 5 C21 = (–1)2+1 × M21 = –1 × –40 = 40 C31 = (–1)3+1 × M31 = 1 × –30 = –30 Now expanding along the first column we get |A| = a11 × C11 + a21× C21+ a31× C31 = 0× 5 + 1 × 40 + 3× (–30) = 0 + 40 – 90 = 50 |
|
293. |
Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case :A = \(\begin{bmatrix} a&h & g \\[0.3em] h & b & f \\[0.3em] g & f & c \end{bmatrix}\) |
Answer» Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed. Also, Cij = (–1)i+j × Mij A = \(\begin{bmatrix} a&h & g \\[0.3em] h & b & f \\[0.3em] g & f & c \end{bmatrix}\) ⇒ M11 = \(\begin{bmatrix}b&f \\[0.3em] f & c\\[0.3em] \end{bmatrix}\) M11 = b × c – f × f M11 = bc– f2 ⇒ M21 = \(\begin{bmatrix}h&g \\[0.3em] f & c\\[0.3em] \end{bmatrix}\) M21 = h × c – f × g M21 = hc – fg ⇒ M31 = \(\begin{bmatrix}h&g \\[0.3em] b & f\\[0.3em] \end{bmatrix}\) M31 = h × f – b × g M31 = hf – bg C11 = (–1)1+1 × M11 = 1 × (bc– f2) = bc– f2 C21 = (–1)2+1 × M21 = –1 × (hc – fg) = fg – hc C31 = (–1)3+1 × M31 = 1 × (hf – bg) = hf – bg Now expanding along the first column we get |A| = a11 × C11 + a21× C21+ a31× C31 = a× (bc– f2) + h× (fg – hc) + g× (hf – bg) = abc– af2 + hgf – h2c +ghf – bg2 |
|
294. |
Find the real values of `lambda`for which the following system of linear equations has non-trivialsolutions. Also, find the non-trivial solutions.`2lambdax-2y+3z=0``x+lambday+2z=0``2x+lambdaz=0` |
Answer» `|(2 lambda ,-2, 3),(1, lamda, 2),(2,0,lamda)|= 0` `2 lamda^3 + (-8)- 6lamda + 2lamda = 0` `2 lamda^3 - 4 lamda - 8 = 0` `lamda^3 - 2 lamda - 4 = 0` so, `lamda= 2` `(lamda- 2)(lamda^2 + 2 lamda + 2) = 0` `lamda = (-2 +- isqrt(4-0))/21 = (-2 +- 2i)/2` `lamda = -1 +- i` Answer |
|
295. |
If A is a square matrix of order n × n such that |A| = λ, then write the value of |-A|. |
Answer» Since |kA| = km|A| Given that k = -1, m = n and |A| = λ, we get |-A| = (-1)n×λ Hence, |-A| = λ if n is even and |-A| = -λ if n is odd. |
|
296. |
Write the value of \(\begin{vmatrix}sin\,20° & -cos\,20° \\[0.3em]sin\,70°& cos\,70° \\[0.3em]\end{vmatrix}\). |
Answer» \(\begin{vmatrix}sin\,20° & -cos\,20° \\[0.3em]sin\,70°& cos\,70° \\[0.3em]\end{vmatrix}\) = sin 20° . cos 70° + cos 20° . sin 70° = sin (20° + 70°) = sin 90° = 1. |
|
297. |
If A is a 3 × 3 matrix, then what will be the value of k if Det(A-1) = (Det A)k? |
Answer» We are given that, Order of matrix = 3 × 3 Det(A-1) = (Det A)k An n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. We know that, If A and B are square matrices of same order, then Det (AB) = Det (A).Det (B) Since, A is an invertible matrix, this means that, A has an inverse called A-1. Then, if A and A-1 are inverse matrices, then Det (AA-1) = Det (A).Det (A-1) By property of inverse matrices, AA-1 = I ∴, Det (I) = Det (A).Det (A-1) Since, Det (I) = 1 \(\Rightarrow\) 1 = Det (A).Det (A-1) \(\Rightarrow\) Det (A-1) = \(\frac{1}{Det(A)}\) \(\Rightarrow\) Det (A-1) = Det (A)-1 Since, according to question, Det(A-1) = (Det A)k \(\Rightarrow\) k = -1 Thus, the value of k is -1. |
|
298. |
Using properties of determinants Prove that `|{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)` |
Answer» `Delta =- |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),(-b,,-a,,a+b+c):}|` Applying `R_(3) to R_(3) +R_(2),R_(1) to R_(1)+R_(2)` `Delta= |{:(a+b,,a+b,,-(a+b)),(-c,,a+b+c,,-a),(-(b+c),,b+c,,b+c):}|` `=(a+b)(b+c) |{:(1,,1,,-1),(-c,,a+b+c,,-a),(-1,,1,,1):}|` Applying `R_(1) to R_(1)+R_(3)` `Delta =(a+b)(b+c) |{:(0,,2,,0),(-c,,a+b+c,,-a),(-1,,1,,1):}|` `= (a+b)(b+c) (-2) |{:(-c,,-a),(-a,,1):}|` `=2(a+b)(b+c)(c+a)` |
|
299. |
Solve `|{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,4x^(2)+4x-3),(6x^(2)-x-2,,6x^(2)-7x+2,,12x^(2)-5x-2):}| =0` |
Answer» Correct Answer - `x=-1,(1)/(2),(2)/(3),-(2)/(3)` `|{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,4x^(2)+4x-3),((3x-2)(2x+1),,6x^(2)-7x+2,,12x^(2)-5x-2):}|=0` `" or " |{:((x-1)(x+1),,(x+1)^(2),,(x+1)(2x+1)),((2x-1)(x+1),,(2x-1)(x+3),,(2x-1)(2x+3)),((3x-2)(2x+1),,(3x-2)(2x+1),,(3x-2)(4x+1)):}|=0` `" or " (x+1)(2x-1)(3x-2) |{:(x-1,,x+1,,2x+1),(x+1,,x+3,,2x+3),(2x+1,,2x-1,,4x+1):}|=0` `C_(2) to C_(2)-C_(1) " and "C_(3) to C_(3) -2C_(1)` `rArr (x+1) (2x-1) (3x-2) |{:(x-1,,2,,3),(x+1,,2,,1),(2x+1,,-2,,-1):}|=0` Applying `C_(2)to C_(2)-2C_(3)` we get `(x+1) (2x-1) (3x-2) |{:(x-1,,-4,,3),(x+1,,0,,1),(2x+1,,0,,-1):}|=0` `" or " 4(x+1)(2x-1)(3x-2)(3x+2)=0` `" or " x=-1, (1)/(2),(2)/(3),(2)/(3)` |
|
300. |
Evaluate \(\begin{vmatrix} 0 & 2 & 0 \\[0.3em] 2 & 3 & 4 \\[0.3em] 4 & 5 &6 \end{vmatrix}\) |(0,2,0),(2,3,4),(4,5,6)| |
Answer» We know that expansion of determinant with respect to first row is a11A11+a12A12+a13A13. = 0(3 × 6-5 × 4) - 2(2 × 6-4 × 4) + 0(2 × 5-4 × 3) = 8. |
|