1.

Evaluate the following determinants :i. \(\begin{vmatrix}x &-7 \\[0.3em]x & 5x+1 \\[0.3em]\end{vmatrix}\)ii. \(\begin{vmatrix}cos\,\theta &-sin\,\theta \\[0.3em]sin\,\theta & cos\,\theta \\[0.3em]\end{vmatrix}\)iii. \(\begin{vmatrix}cos\,15° &-sin\,15° \\[0.3em]sin\,75° & cos\,75° \\[0.3em]\end{vmatrix}\)iv. \(\begin{vmatrix}a+ib &c+id \\[0.3em]-c+id & a-ib \\[0.3em]\end{vmatrix}\)

Answer»

i. Let A = \(\begin{vmatrix} x &-7 \\[0.3em] x & 5x+1 \\[0.3em] \end{vmatrix}\)

⇒ |A| = x(5x + 1) – (–7)x 

|A| = 5x2 + 8x

ii. Let A = \(\begin{vmatrix} cos\,\theta &-sin\,\theta \\[0.3em] sin\,\theta & cos\,\theta \\[0.3em] \end{vmatrix}\)

⇒ |A| = cosθ × cosθ – (–sinθ) x sinθ 

|A| = cos 2θ + sin 2θ 

|A| = 1

iii. Let A = \(\begin{vmatrix} cos\,15° &-sin\,15° \\[0.3em] sin\,75° & cos\,75° \\[0.3em] \end{vmatrix}\)

⇒ |A| = cos15° × cos75° + sin15° x sin75° 

|A| = cos(75 – 15)° 

|A| = cos60° 

|A| = 0.5.

iv. A = \(\begin{vmatrix} a+ib &c+id \\[0.3em] -c+id & a-ib \\[0.3em] \end{vmatrix}\)

⇒ |A| = (a + ib)( a – ib) – (c + id)( –c + id) 

= (a + ib)( a – ib) + (c + id)( c – id) 

= a2 – i2 b2 + c2 – i2 d2 = a2 – (–1)b2 + c2 – (–1)d2 

= a2 + b2 + c2 + d2



Discussion

No Comment Found