

InterviewSolution
1. |
Evaluate the following determinants :i. \(\begin{vmatrix}x &-7 \\[0.3em]x & 5x+1 \\[0.3em]\end{vmatrix}\)ii. \(\begin{vmatrix}cos\,\theta &-sin\,\theta \\[0.3em]sin\,\theta & cos\,\theta \\[0.3em]\end{vmatrix}\)iii. \(\begin{vmatrix}cos\,15° &-sin\,15° \\[0.3em]sin\,75° & cos\,75° \\[0.3em]\end{vmatrix}\)iv. \(\begin{vmatrix}a+ib &c+id \\[0.3em]-c+id & a-ib \\[0.3em]\end{vmatrix}\) |
Answer» i. Let A = \(\begin{vmatrix} x &-7 \\[0.3em] x & 5x+1 \\[0.3em] \end{vmatrix}\) ⇒ |A| = x(5x + 1) – (–7)x |A| = 5x2 + 8x ii. Let A = \(\begin{vmatrix} cos\,\theta &-sin\,\theta \\[0.3em] sin\,\theta & cos\,\theta \\[0.3em] \end{vmatrix}\) ⇒ |A| = cosθ × cosθ – (–sinθ) x sinθ |A| = cos 2θ + sin 2θ |A| = 1 iii. Let A = \(\begin{vmatrix} cos\,15° &-sin\,15° \\[0.3em] sin\,75° & cos\,75° \\[0.3em] \end{vmatrix}\) ⇒ |A| = cos15° × cos75° + sin15° x sin75° |A| = cos(75 – 15)° |A| = cos60° |A| = 0.5. iv. A = \(\begin{vmatrix} a+ib &c+id \\[0.3em] -c+id & a-ib \\[0.3em] \end{vmatrix}\) ⇒ |A| = (a + ib)( a – ib) – (c + id)( –c + id) = (a + ib)( a – ib) + (c + id)( c – id) = a2 – i2 b2 + c2 – i2 d2 = a2 – (–1)b2 + c2 – (–1)d2 = a2 + b2 + c2 + d2 |
|