Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

Without expanding the determinant, prove that \(\begin{vmatrix} 41 &1 & 5 \\[0.3em] 79 & 7 &9\\[0.3em] 29 & 5 & 3 \end{vmatrix}\) = 0SINGULAR MATRIX A square matrix A is said to be singular if |A| = 0. Also, A is called non singular if |A| ≠ 0.

Answer»

We know that C1⇒ C1-C2, would not change anything for the determinant. 

Applying the same in above determinant, we get

\(\begin{bmatrix} 40 &1 & 5 \\[0.3em] 72 & 7 &9\\[0.3em] 24 & 5 & 3 \end{bmatrix}\) Now it can clearly be seen that C1=8 × C3

Applying above equation we get,

\(\begin{bmatrix} 0 &1 & 5 \\[0.3em] 0 & 7 &9\\[0.3em] 0 & 5 & 3 \end{bmatrix}\)

We know that if a row or column of a determinant is 0. Then it is singular determinant.

302.

Let A be a square matric of order 3 × 3. Write the value of |2A|, where |A| = 4.

Answer»

∵ |2A| = 2n |A|, where n is order of matrix A.

Here, 

|A| = 4 and n = 3

|2A| = 23 × 4 = 32

303.

Find the area of the triangle whose vertices are: `(-2,-3),(3,2),(-1,-8)`

Answer» Here, `(x_(1) =-2, y_(1) =-3), (x_(2) =3, y_(2) =2) " and " (x_(3) =-1, y_(3) =-8)`
`therefore (1)/(2) |[x_(1), y_(1), 1],[x_(2), y_(2), 1],[x_(3), y_(3), 1]| =(1)/(2) * |[-2, -3, 1],[3, 2, 1],[-1, -8, 1]|`
`=(1)/(2) * |[-2, -3, 1],[5, 5, 0],[1, -5, 0]| [R_(2) to (R_(2) -R_(1)) " and" R_(3) to (R_(3) -R_(1))]`
` =(1)/(2) *1* |[5, 5], [1, -5]| = (1)/(2) xx (-25 -5) = -15`
Hence, ar `(triangleABC) =|-15| =15` square units.
304.

Show that points`A (a , b + c)`, `B (b , c + a)`, `C (c , a + b)`are collinear.

Answer» Points A, B, C are collinear `hArr ar(triangleABC) =0`
Now, `ar(triangleABC) = (1)/(2) * |[a, a+b+c, 1],[b, a+b+c, 1],[c, a+b+c, 1]| [C_(2) to (C_(2) + C_(1))]`
` = (1)/(2)(a+b+c)*|[a, 1, 1],[b, 1, 1],[c, 1, 1]|`
`=(1)/(2)(a+b+c) xx 0 =0 [because C_(2) " and"C_(3) "are identical"]`
Hence, the given points are collinear.
305.

Find the value of k in order that the points (5, 5), (k, 1) and (10, 7) are collinear.

Answer» The given points are collinear
`hArr |[5, 5, 1],[k, 1, 1],[10, 7, 1]| =0 `
`hArr |[5, 5, 1],[k-5, -4, 0],[5, 2, 0]| =0 [R_(2) to R_(2) -R_(1) " and "R_(3) to R_(3) -R_(1)] `
`hArr 1. [2(k-5) +20] =0`
`hArr 2k+10=0 hArr k =-5`
Hence, k =-5
306.

Solve by matrix method : `2x+y=5` `x-y = 1`

Answer» Write the given equations in matrix form
`[{:(2,1),(1,-1):}][{:(x),(y):}]=[{:(5),(1):}]`
`rArr" " AX=B`
`"Where "A=[{:(2,1),(1,-1):}],X=[{:(x),(y):}]" and B"=[{:(5),(1):}]`
`|A|=[{:(2,1),(1,-1):}]=-2-1 =-3 ne0`
`therefore" A is invertible",`
Cofactors of the elements of matrix A.
`c_(11)=(-1)^(1+1)(-1)=-1`
`x_(12)=(-1)^(1+2)1=-1`
`c_(21)=(-1)^(2+1)1=-1`
`c_(22)=(-1)^(2+2)2=2`
`therefore" adj. A"=[{:(c_(11),c_(12)),(c_(21),c_(22)):}]`
`[{:(-1,-1),(-1,2):}]=[{:(-1,-1),(-1,2):}]`
`"and "A^(-1)=1/(|A|)" adj. A"=-1/3[{:(-1,-1),(-1,2):}]`
Now AX=B
`rArr" "AX=B`
`rArr[{:(x),(y):}]=-1/3[{:(-1,-1),(-1,2):}]=-1/3[{:(-5,-1),(-5,+2):}]=[{:(2),(1):}]`
`therefore" "x=2, y=1.`
307.

If `A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}]`, then show that `A^(3)=A^(-1)`.

Answer» `A^(2)=A.A`
`=[{:(3,-3,4),(2,-3,4),(0,-1,1):}][{:(3,-3,4),(2,-3,4),(0,-1,1):}]`
`=[{:(9-6+0,-9+9-4,12-12+4),(6-6+0,-6+9-4,8-12+4),(0-2+0,0+3-1,0-4+1):}]`
`=[{:(3,-4,4),(0,-1,0),(-2,2,-3):}]`
`"and "A^(4)=A^(2).A^(2)`
`=[{:(3,-4,4),(0,-1,0),(-2,2,-2):}][{:(3,-4,4),(0,-1,0),(-2,2,-3):}]`
`[{:(9+0-8,-12+4+8,12+0-12),(0+0+0,0+1+0,0+0+),(-6+0+6,8-2-6,-8+0+9):}]`
`=[{:(1,0,0),(0,1,0),(0,0,1):}]=I`
`therefore" "A^(4)-I`
`=[{:(3,-3,4),(2,-3,4),(0,0,1):}]=3|{:(-3,4),(-1,1):}|-2|{:(-3,4),(-1,1):}|+0`
`("Expanding along" C_(1))`
` =3(-3+4)-2(-3+4)=3-2=1ne0`
A is invertible.
`rArr A^(-1)"exists".`
`A^(4)=I`
`rArr" "A^(-1)A^(4)=A^(-1)I`
`rArr" "A^(3)=A^(-1)`.
308.

Find a matrix B of order `2xx2` such that : `[{:(1,1),(-2,3):}]B=[{:(3,4),(-1,2):}]`

Answer» `LetA=[{:(1,1),(-2,3):}]" and "C=[{:(3,4),(-1,2):}]`
`therefore" "|A|=[{:(1,1),(-2,3):}]=3-(-2)=5ne0`
`therefore" A is invertible".`
Cofactors of martrix A
`c_(11)=(-1)^(1+1).3=3`
`c_(12)=(-1)^(1+2).(-2)=2`
`c_(21)=(-1)^(2+1).1=-1`
`c_(22)=(-1)^(2+2).1=1`
`therefore" adj.A"=[{:(c_(11),c_(12)),(c_(21),c_(22)):}]=[{:(3,2),(-1,1):}]=[{:(3,-1),(2,1):}]`
`"and "A^(-1)=1/(|A|)"adj.A"=1/5[{:(3,-1),(2,1):}]`
From eq. (1)
AB = C
`rArr" " A^(-1) (AB) = A^(-1) C`
`rArr" " (A^(-1)A)B=1/5[{:(3,-1),(2,1):}][{:(3,4),(-1,2):}]`
(From associative law)
`rArr" "IB=1/5[{:(9+1,12-2),(6-1,8+2):}](becauseA^(-1)A=I)`
`rArr" "B=[{:(2,2),(1,2):}]`
309.

If `A=[{:(1,-1),(2,3):}]`, shown that `A^(2)-44+5I=o`. Hence Find `A^(-1)`.

Answer» `A=[{:(1,-1),(2,3):}]`
`rArr" "A^(2)=A.A=[{:(1,-1),(2,3):}][{:(1,-1),(2,3):}]`
`[{:(1-2,-1-3),(2+6,-2+9):}]=[{:(-1,-4),(8,7):}]`
`"Now, L.H.S."=A^(2)-4A+5I`
`[{:(-1,-4),(8,7):}]-4[{:(-1,-1),(2,3):}]+5[{:(1,0),(0,1):}]`
`[{:(-1,-4),(8,7):}]-[{:(4,-4),(8,12):}]+[{:(5,0),(0,):}]`
`[{:(0,0),(0,0):}]=o=R.H.S.`
`"Now "|A|=|{:(1,-1),(2,3):}|=3-(-2)=5ne0`
therefore, `A^(-1)` exists.
`therefore" "A^(2)-4A+5I=0 `
`rArr A^(-1)(A^(2)-4A+5I)=A^(1).O`
`rArr" "A-4I+5A^(-1)=4I-A`
`=[{:(1,0),(0,1):}]-[{:(1,-1),(2,3):}]=[{:(3,1),(-2,1):}]`
`rArr=A^(-1)=1/5[{:(3,1),(-2,1):}].`
310.

If `A=[{:(3,2,1),(0,-1,-2),(-3,4,2):}]`, find `A^(-1)`

Answer» `|A|=[{:(3,2,1),(0,-1,-2),(-3,4,2):}]`
`=3[{:(-1,-2),(4,2):}]-2|{:(0,-2),(-3,2):}|+1|{:(0,-1),(-3,4):}|`
`=3(-2+8)-2(0-6)+1(0-3)
=18+12-3=27ne0`
`therefore" A is invertible matrix".`
Cofactore of matrix A
`C_(11)=(-1)^(1+1)|{:(-1,-2),(4,2):}|=(-2+8)=6`
`C_(12)=(-1)^(1+2)|{:(0,-2),(-3,2):}|=-(0-6)=6`
`C_(13)=(-1)^(1+3)|{:(0,-1),(-3,4):}|=0-3=-3`
`C_(21)=(-1)^(2+1)|{:(2,1),(4,2):}|=-(4-4)=0`
`C_(22)=(-1)^(2+2)|{:(3,1),(-3,2):}|=6+3=6`
`C_(23)=(-1)^(2+3)|{:(3,2),(-3,4):}|=-(12+6)=-18`
`C_(31)=(-1)^(3+1)|{:(2,1),(-1,-2):}|=-4+1=-3`
`C_(32)=(-1)^(3+2)|{:(3,2),(0,-2):}|=-(-0)=6`
`C_(33)=(-1)^(3+3)|{:(3,2),(0,-1):}|=-3-0=-3`
`therefore" adj.A"=[{:(c_(11),c_(12),c_(13)),(c_(21),c_(22),c_(23)),(c_(31),c_(32),c_(33)):}]`
`=[{:(6,6,-3),(0,9,-18),(-3,6,-3):}]=[{:(6,0,-3),(6,9,6),(-3,-18,-3):}]`
`"and "A^(-1)=1/(|A|)."adj.A"=1/27[{:(6,0,-3),(6,9,6),(-3,-18,-3):}]`
`=3/27[{:(2,0,-1),(2,3,2),(-1,-6,-1):}]=1/9[{:(2,0,-1),(2,3,2),(-1,-6,-1):}]`
311.

If `A=|{:(3,5),(2,4):}|`, find `A^(-1)`.

Answer» `|A|=|{:(3,5),(2,4):}|`
=12-10
`=2ne0`
`rArr" "A is invertible.`
`"Now"" "C_(11)=(-1)^(1+1).4=4`
`C_(12)=(-1)^(1+2).42=-2`
`C_(21)=(-1)^(2+1).5=-5`
`C_(22)=(-1)^(2+3).3=3`
` therefore"adj.A="[{:(C_(11),C_(12)),(C_(21),C_(22)):}]=[{:(4,-2),(-5,3):}]=[{:(4,-5),(-2,3):}]`
`therefore"adj.A^=1/(|A|)."adj.A=1/2[{:(4,-5),(-2,3):}]`
312.

Find the equation of a line passing through the points (3,5) and (-2, 1).

Answer» Equation of a line passing throught the points (3,5) and (-2, 1) is :
`=1/2|{:(x,y,1),(3,5,1),(-2,1,1):}|=0`
`rArr x(5-1) -y(3+2)+1(3+10)=0 `
`("Expanding along "R_(1))`
`rArr" "4x-5y+13=0.`
313.

Prove that the points (0,3), (4,6) and (-8, -3) are collinear.

Answer» `Delta=1/2|{:(0,3,2),(4,6,1),(-8,-3,1):}|`
`=1/2|{:(0,3,2),(4,6,1),(-8,-3,1):}|" "(C_(2)toC_(2)-3C_(3))`
`=1/2|{:(4,3),(-8,-6):}|" "("Expanding along "R_(1))`
`=1/2(-24+24)=0`
`therefore" The given points are collinear"`.
314.

which of the following is`//`are true for `Delta= |{:(a^(2),,1,,a+c),(0,,b^(2)+1,,b+c),(0,,b+c,,c^(2)+1):}|` ?A. `Delta ge 0` for real values of a,b,cB. `Delta le 0` for real values of a,b,cC. `Delta =|{:(bc-1,,0,,0),(1,,ac,,-a),(-b,,-a,,ab):}|`D. `Delta =0` if bc =1 where a,b,c are non-zero

Answer» Correct Answer - A::C::D
`|{:(a^(2),,1,,a+c),(0,,b^(2)+1,,b+c),(0,,b+c,,c^(1)+1):}|=|{:(a,,0,,1),(0,,b,,1),(0,,1,,c):}||{:(a,,0,,1),(0,,b,,1),(0,,1,,c):}|`
`=|{:(a,,0,,1),(0,,b,,1),(0,,1,,c):}|^(2)`
`=(abc -a)^(2)= a^(2) (bc-1)^(2)`
`=|{:(bc-1,,0,,0),(1,,ac,,-a),(-b,,-a,,ab):}|`
{Determinant formed by cofactors)
315.

Prove that`|a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot`

Answer» We have `Delta = |{:(a,,b+c,,a^(2)),(b,,c+a,,b^(2)),(c,,a+b,,c^(2)):}|`
Applying `C_(2) to C_(2) +C_(1)` and then taking `(a+b+c)` common from `C_(2)` we get
` Delta =(a+b+c)xx |{:(a,,1,,a^(2)),(b,,1,,b^(2)),(c,,1,,c^(2)):}|`
`=- (a+b+c) xx |{:(1,,a,,a^(2)),(1,,b,,b^(2)),(1,,c,,c^(2)):}| " (Applying " C_(1) to C_(2)")"`
`=- (a+b+c)(a-b)(b-c)(c-a)`
316.

Find the area of triangle whose vertices are (2,7), (1,1) and (10,8).

Answer» Area of tringle `=1/2|{:(2,7,1),(1,1,1),(10,8,1):}|`
`=1/2|{:(1,6,0),(-9,-7,0),(10,8,1):}|" "{:((R_(1)toR_(1)-R_(2))),((R_(2)toR_(2)-R_(3))):}`
`=1/2 (-7+54)" "("Expanding along "C_(3))`
= 23.5 sq. units,
317.

`" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}|` thenA. `r^(2)=x+y+z`B. `r^(2) =x^(2) =y^(2) +z^(2)`C. `u^(2) =yz+zx+xy`D. `u^(2) =xyz`

Answer» Correct Answer - B::C
In the left - hand determinant each element is the cofactor of the elements of the determinant
`|{:(x,,y,,z),(y,,z,,x),(z,,x,,y):}|=Delta " (says) "`
hence
`Delta^(2) = |{:(x,,y,,z),(y,,z,,x),(z,,x,,y):}||{:(x,,y,,z),(y,,z,,x),(z,,x,,y):}|`
`=|{:(x^(2)+y^(2)+z^(2),,xy+yz+zx,,xz+yx+zy),(Sigmaxy,,Sigmax^(2),,Sigmaxy),(Sigmaxy,,Sigmaxy,,Sigmax^(2)):}|`
`|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}|" "underset(xy+yz+zx=u^(2))("Where "x^(2)+y^(2)+z^(2)=r^(2))`
318.

Prove that `|{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}|` `=(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))`

Answer» we have
`Delta =|{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}|`
Applying `C_(2) to C_(2) -2 C_(1) -2C_(3)` we get
`Delta =|{:(x^(2),,-(x^(2)+y^(2)+z^(2)),,yz),(y^(2),,-(x^(2)+y^(2)+z^(2)),,zx),(z^(2),,-(x^(2)+y^(2)+z^(2)),,xy):}|`
`=- (x^(2) +Y^(2) +z^(2)) |{:(x^(2),,1,,yz),(y^(2),,1,,zx),(z^(2),,1,,xy):}|`
Multiplying `R_(1),R_(2) " and " R_(3) by x, y` and z, respectively we get
`Delta =- ((x^(2)+y^(2)+z^(2)))/(xyz) |{:(x^(3),,x,,yz),(y^(3),,y,,zx),(z^(3),,z,,xy):}|`
`=- (x^(2) +y^(2) +z^(2)) |{:(x^(3),,x,,1),(y^(3),,y,,1),(z^(3),,z,,1):}| "( Taking xyz common from " c_(3)")"`
`=(x^(2)+y^(2)+z^(2)) |{:(1,,x,,x^(3)),(1,,y,,y^(3)),(1,,z,,z^(3)):}| "(Applying " C_(1) hArr C_(3)")"`
` =(x-y) (y-z) (z-x) (x+y+z) (x^(2) +y^(2)+z^(2))`
319.

if `|{:(3,1,-4),(3,2,5),(1,-1,3):}|=49`, then evaluate `|{:(6,3,-8/3),(6,6,10/3),(2,-3,2):}|`.

Answer» `|{:(3,1,-4),(3,2,5),(1,-1,3):}|=49`
`|{:(6,3,-8/3),(6,6,10/3),(2,-3,2):}|=2xx3xx2/3|{:(3,1,4),(3,2,5),(1,-1,3):}|`
320.

Prove that `|{:(1,x+alpha,y+z-alpha),(1,t+beta,+x-beta),(1,z+gamma,x+y-gamma):}|=0`

Answer» `L.H.S.=|{:(1,x+alpha,y+z-alpha),(1,t+beta,+x-beta),(1,z+gamma,x+y-gamma):}|`
`=|{:(1,x+alpha,y+z-alpha),(1,t+beta,+x-beta),(1,z+gamma,x+y-gamma):}|(C_(3)toC_(3)+C_(2))`
`=(x+y+z)|{:(1,x+alpha,1),(1,t+beta,1),(1,z+gamma,1):}|`
`=0 " "(therefore C_(1)" and "C_(3)" are same")`
`=R.H.S." "Hence Proved`.
321.

Solve the equation `|{:(x+2,1,-3),(1,x-3,-2),(-3,-2,1):}|=0.`

Answer» `|{:(x+2,1,-3),(1,x-3,-2),(-3,-2,1):}|=0.`
`rArr" "|{:(x-2,1,-3),(-(x-2),x-3,-2),(0,-2,1):}|=0.`
`rArr" (x-2) "|{:(1,1,-3),(-1,x-3,-2),(0,-2,1):}|=0.`
`rArr" (x-2) "|{:(1,1,-3),(-1,x-2,-5),(0,-2,1):}|=0 ("From "R_(2)toR_(2)+R_(1))`
`rArr(x-2).1|{:(x-2,-5),(-2,1):}|=0 ("Expanding with "C_(1))`
`rArr (x-2)(x-2-10)=0`
`rArr (x-2)(x-12)=0`
` rArr x=2 or x=12`.
322.

Prove that : `|{:(1,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)`

Answer» `|{:(1,b,c),(b,c,a),(c,a,b):}|`
`|{:(1+b+c,b,c),(b+c+a,c,a),(c+a+b,a,b):}|(C_(1)toC_(1)+C_(2)+C_(3))`
`=(a+b+c)|{:(1,b,c),(1,c,a),(1,a,b):}|`
`=(a+b+c)|{1|{:(c,a),(a,b):}|-1|{:(b,c),(a,b):}|+1|{:(b,c),(c,a):}|}`
`("Expanding with "C_(1))`
`(a+b+c)(bc-a^(2)-b^(2)+ac+ab-c^(2))`
`=(a+b+C)(ab+bc+ca-a^(2)-b^(2)-c^(2))`
`=3a b c -a^(3)-c^(3)= R.H.S.`
323.

Prove that `|{:(1,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(a+b+c)`

Answer» `|{:(1,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|`
`|{:(1+b+c,a+b+c,a+b+c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|(R_(1)toR_(1)+R_(3))`
`=(a+b+c)|{:(1,1,1),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|`
`=(a+b+c)|{:(0,0,1),(a^(2)-b^(2),b^(2)-c^(2),c^(2)),(b-c,c-b,a+b):}|`
`(C_(1)toC_(1)-C_(2))`
`(C_(2)toC_(2)-C_(3))`
`=(a+b+c)(a-b)(b-c)|{:(0,0,1),(a+b,b+c,c^(2)),(-1,-1,a+b):}|`
`=(a+b+c)(a-b)(b-c).1|underset(-1)(a+b)" "underset(-1)(b+c)|`
`(" Expanding with "R_(1))`
`=(a+b+c)(a-b)(b-c){-(a+b)+(b+c)}
=(a+b+c)(a-b)(b-c)(c-a)=R.H.S.`
324.

Without, prove that : `|{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|`

Answer» `|{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|`
`=|{:(2(a+b+c),b+c,c+b),(2(p+q+r),q+r,r+p),(2(x+y+z),y+z,z+x):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`|{:(a+b+c,b+c,c+a),(p+q+r,q+r,r+p),(x+y+z,y+z,z+x):}|`
`=2|{:(1,b+c,c+a),(p,q+r,r+p),(x,y+z,z+x):}|`
`(C_(1)toC_(1)-C_(2))`
`=2|{:(1,b+c,c),(p,q+r,r),(x,y+z,z):}|`
`(C_(3)toC_(3)-C_(1))`
`=2|{:(1,b,c),(p,q,r),(x,y,z):}|(C_(2)toC_(2)-C_(3))`
=R.H.S. Hence Proved.
325.

Prove that : `=2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)`

Answer» `L.H.S.=2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|`
`=|{:(0,0,1),(x-y,y-z,z),(x^(2)-y^(2),y^(2)-z^(2),z^(2)):}|{:(((C_(1)to,C_(1)-,C_(2)))),(((C_(2)to,C_(2)-,C_(3)))):}`
`(x-y)(y-z)|{:(0,0,1),(1,1,z),(x+y,y+z,z^(2)):}|`
`(x-y)(y-z)1|underset(x+y)(1)" "underset(y+z)(1)|`
`("Expending with "R_(1))`
` =(x-y){(y-z)-(x+y))}`
`=(x-y) (y-z) (z-x) = R.H.S.`
326.

Using the property of determinants and without expanding, prove that:`|[0,a,-b],[-a,0,-c],[ b, c,0]|=0`

Answer» `D= |[0,a,-b],[-a,0,-c],[b,c,0]|`
We know, if we interchange rows and columns of a determinant, value of the determinant does not change.
So, if we interchange rows and columns of given determinant, then,
`D = |[0,-a,b],[a,0,c],[-b,-c,0]| = (-1)^3|[0,a,-b],[-a,0,-c],[b,c,0]| = -D`
`:. D = -D`
`=>2D = 0`
`=> D = 0`
Therefore, value of the given determinant is `0`.
327.

if a=cos 0 + in sin 0,=cos 20 -I sin 2 0, c= cos 0 + I sin 3 0 and if `|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}| =0 ` thenA. `=0 2 k pi, k in Z`B. ` 0= (2k +1) pi k in Z`C. `0= (4k +1) pi k in Z`D. none of these

Answer» Correct Answer - A
`Delta =|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|`
`=-(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`=(1)/(2) (a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]=0`
`rArr a+b+c=0" or " a=b=c `
`" if " a+b+c =0 , ` we have
`cos0 + cos 2 0 + cos 3 0 =0` and s sin 0 -sin 2 0 + sin 3 0 =0
`" or " cos 2 0 (2 cos 0 + 1) =0 " and " sin 2 0 (1 -2 cos 0 ) =0 (1)`
which is not possible as cos 2 0 = 0 given sin 2 0 `ne 0` cos 0 `ne 1//2`
And cos 0 = `1//2` gives sin 2 0 `ne 0 cos 0 ne 1//2` . Therefore , Eq.
(1) does not hold simultaneously .Therefore ,
`a+b+c ne 0`
`rArr a=b=c`
`:. e^(i0) =e^(-2i0) =e^(3i0)`
which is satisfied only by by `e^(i 0) =1, i.e., cos 0 =1 sin 0 =0`
`so 0 = 2k pi , k in Z`
328.

Without, prove that : `|{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|`

Answer» `|{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|`
`=|{:(2(a+b+c),b+c,c+b),(2(p+q+r),q+r,r+p),(2(x+y+z),y+z,z+x):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`|{:(a+b+c,b+c,c+a),(p+q+r,q+r,r+p),(x+y+z,y+z,z+x):}|`
`=2|{:(1,b+c,c+a),(p,q+r,r+p),(x,y+z,z+x):}|`
`(C_(1)toC_(1)-C_(2))`
`=2|{:(1,b+c,c),(p,q+r,r),(x,y+z,z):}|`
`(C_(3)toC_(3)-C_(1))`
`=2|{:(1,b,c),(p,q,r),(x,y,z):}|(C_(2)toC_(2)-C_(3))`
=R.H.S. Hence Proved.
329.

[ 28.If f(x)=|[0,x-a,x-bx+a,0,x-cx+b,x+c,0]| then,[ 1) f(a)=0, 2) f(b)=0]]A. `f(a)=0`B. `f(b)=0`C. `f(0)=0`D. `f(1)=0`

Answer» Correct Answer - C
We have
`f(x)=|(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)|`
`implies f(a)=|(0,0,a-b),(2a,0,a-c),(a+b,a+c,0)|`
`=[(a-b)}2a.(a+c)}]!=0`
`:. f(b)=|(0,b-a,0),(b+a,0,b-c),(2b,b+c,0)|`
`=-(b-a)[2b(b-c)]`
`=-2b(b-a)(b-c)!=0`
`:.f(0)=|(0,-a,-b),(a,0,-c),(b,c,0)|`
`=a(bc)-b(ac)`
`=abc-abc=0`
330.

Can students Score high marks if they practice Determinants Class 12  Mock Test

Answer»

Start practicing for Determinants class 12 mock test and become proficient in this topic before you appear in the CBSE class 12 exams. Our teachers have provided the class 12 Determinants Online Mock Test series and based on MCQ questions with answers in the below links for CBSE Class 12 Determinants Online Mock Test. These tests are very helpful in preparations for all major exams, so make a habit of attempting these CBSE class 12 mock tests and experience the improvement in your skills.

You should practice these Determinants Class 12 Online Tests having objective-based questions and compare your answers with the solutions provided by us. Students can attempt the mock tests for CBSE Class 12 as many number of times as they want and also download a passing certificate after they have cleared the online test.

The free Determinants online mock tests Class 12 should be used by students to check their understanding of their concepts of  Class 12 Determinants. Sarthaks eConnect brings here the biggest collection of Class 12 question based on online tests for CBSE Class 12 Determinants 2021 exams to help you prepare properly and get highest rank in exams.

Click here to start practice: - Class 12 Determinants Mock Test

331.

If `A=[[2,a,-3] , [0,2,5] , [1,1,3]]` then,find the value of a for which `A^(-1)` exists.A. `a=2`B. `a!=2`C. `a!=-2`D. none of these

Answer» Correct Answer - D
We have
`A=|(2, lamda, -3),(0,2,5),(1,1,3)|`
Expanding along `R_(1)`
`|A|=2(6-5)-lamda(-5)-3(-2)=2+5lamda+6`
We know that `A^(-1)` exists if `A` is non singular matrix i.e. `|A|!=0`
`:.2+5lamda+6!=0`
`implies 5lamda!=-8`
`:. lamda!=(-8)/5`
So, `A^(-1)` exists if and only if `lamda!=(-8)/5`.
332.

If A is a singular matrix, then write the value of |A|.

Answer»

Since a singular matrix is a matrix whose determinant is 0, Therefore the determinant of A is 0.

333.

Find the value of the `"determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|`

Answer» `|{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|`
`|{:(sqrt13,2sqrt5,sqrt5),(sqrt26+5,5,sqrt10),(sqrt65+3,sqrt15,5):}|+|{:(2sqrt3,2sqrt5,sqrt5),(sqrt15,5, sqrt10),(3,sqrt15,5):}|`
`sqrt13xxsqrt15xxsqrt5|{:(1,2,1),(sqrt2,sqrt5,sqrt2),(sqrt5,sqrt3,sqrt5):}|+sqrt3xxsqrt5xxsqrt5|{:(2,2,1),(sqrt5,sqrt5,sqrt2),(sqrt3,sqrt3,sqrt5):}|`
=0+0
=0.
334.

If a determinant of order `3xx3` is formed by using the numbers 1 or -1 then minimum value of determinant is :A. -2B. -4C. 0D. -8

Answer» Correct Answer - B
`|{:(1-2 sin^(2)x,,sin^(2)x,,1-8 sin^(2)x(1-sin^(2)x)),(sin^(2)x,,1-sin^(2)x,,1-sin^(2)x),(1-8sin^(2)x(1-sin^(2)x),,1-sin^(2)x,,1-sin^(2)x):}|`
The required constant terms is
`|{:(1,,0,,1),(0,,1,,1),(1,,1,,1):}|+|{:(1,,0,,0),(0,,1,,1),(1,,1,,0):}|=1(10 -1)=-1`
335.

If `|[x^n, x^(n+2),x^(n+3)],[y^n, y^(n+2),y^(n+3)],[z^n, z^(n+2),z^(n+3)]|=(x-y)(y-z)(z-x)(1/x+1/y+1/z),`then `n`equalsA. 1B. -1C. 2D. -2

Answer» Correct Answer - B
The degree or each terms of the determinant is `n + (n+2)+ (n+3) =3n+5` and the degree of each terms of the expression on R.H.S. is 2.
`:. 3n+ 5=2 " or " n=-1`
336.

witout expanding at any stage Prove that `|{:(0,,a,,-b),(-a,,0,,-c),(b,,c,,0):}| =0`

Answer» `|{:(0,,a,,-b),(-a,,0,,-c),(b,,c,,0):}|=|{:(0,,-a,,b),(a,,0,,c),(-b,,-c,,0):}|`
(Taking transpose)
` =(-1)^(3)|{:(0,,a,,-b),(-a,,0,,-c),(b,,c,,0):}|` (Taking (-1) common from each row)
`:. Delta=-Delta`
`rArr 2Delta =0`
`rArr Delta=0`
337.

for `x,x,z gt 0` Prove that `|{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0`

Answer» We have
|{:(1,,(log y)/(log x),,(log y)/(log x)),((log x)/(logy),,1,,(log z)/(log y)),((log x)/(log y),,(log y)/(log z),,1):}|` (Changing base of logarithm) ltbrtgt Taking `(1)/(log x), (1)/(log y) " and " (1)/(log z) " common from " R_(1) ,R_(2) " and " R_(3)f " respectively we get "`
`Delta= (1)/(" log x log y log z ") |{:(log x,,log y,,log z),(log x,,log y,,log z),(log x,,log y,,log z):}|`
`:. Delta =0 " ""(As "R_(1) ,R_(2) " and "R_(3) " are identical "`
338.

Prove that ` |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,c,,c),(x,,y,,z),(yz,,xz,,xy):}|`

Answer» ` |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|`
Taking x,y,z common from`C_(1)C_(2) " and " C_(3)` respeectively we get
` |{:(a,,c,,c),(x,,y,,z),((1)/(x),,(1)/(y),,(1)/(z)):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|`
(Taking xzy to `R_(3)`)
339.

Using the property of determinants and without expanding, prove that:`|[b+c, q+r, y+z],[ c+a, r+p, z+x],[ a+b, p+q, x+y]|=2|[a, p, x],[ b, q ,y],[ c, r, z]|`

Answer» `L.H.S. = |[b+c,q+r,y+z],[c+A,r+p,z+x],[a+b,p+q,x+y]|`
Applying `R_1->R_1+R_2+R_3`
`= |[2(a+b+c),2(p+q+r),2(x+y+z)],[c+a,r+p,z+x],[a+b,p+q,x+y]|`
`= 2|[a+b+c,p+q+r,x+y+z],[c+a,r+p,z+x],[a+b,p+q,x+y]|`
Applying `R_2->R_2-R_1` and `R_3->R_3-R_1`
`=2|[a+b+c,p+q+r,x+y+z],[-b,-q,-y],[-c,-r,-z]|`
Applying `R_1->R_1+R_2+R_3`
`=2|[a,p,x],[-b,-q,-y],[-c,-r,-z]|`
`=2(-1)(-1)|[a,p,x],[b,q,y],[c,r,z]|`
`=2|[a,p,x],[b,q,y],[c,r,z]|=R.H.S.`
340.

Evaluate the following: ` |[a,h,g],[h,b,f],[g,f,c]| `

Answer» Expanding by 1st column, we get
`Delta = a *|{:(b, f), (f, c):}|-h *|{:(h, g), (f, c):}| +g * |{:(h, g), (b, f):}|`
` = a(bc-f^(2)) -h * (ch-fg) + g * (fh -bg)`
` = abc-af^(2)-ch^(2) + fgh + fgh -bg^(2)`
` =(abc +2fgh -af^(2)-bg^(2)-ch^(2)).`
341.

If the determinant `|(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)|` is expanded in powers of `sin x`, then the constant term isA. 1B. 0C. -1D. 2

Answer» Correct Answer - C
`|{:(1-2 sin^(2)x,,sin^(2)x,,1-8 sin^(2)x(1-sin^(2)x)),(sin^(2)x,,1-sin^(2)x,,1-sin^(2)x),(1-8sin^(2)x(1-sin^(2)x),,1-sin^(2)x,,1-sin^(2)x):}|`
The required constant terms is
`|{:(1,,0,,1),(0,,1,,1),(1,,1,,1):}|+|{:(1,,0,,0),(0,,1,,1),(1,,1,,0):}|=1(10 -1)=-1`
342.

consider the fourth -degree polynomial equation `|{:(a_(1)+b_(1)x,,a_(1)x^(2)+b_(1),,c_(1)),(a_(2)+b_(2)x^(2),,a_(2)x^(2)+b_(2),,c_(2)),(a_(3)+b_(3)x^(2),,a_(3)x^(2)+b_(3),,c_(3)):}|=0` Without expanding the determinant find all the roots of the equation.

Answer» `|{:(a_(1)+b_(1)x,,a_(1)x^(2)+b_(1),,c_(1)),(a_(2)+b_(2)x^(2),,a_(2)x^(2)+b_(2),,c_(2)),(a_(3)+b_(3)x^(2),,a_(3)x^(2)+b_(3),,c_(3)):}|=0 ("As " C_(1) " and " C_(2) " are indentical")`
So `x= +-1` are roots of the given equation . From Sarrus rule we observe that the degree of equation is 4.
343.

Evaluate `|{:(2, 7, 65), (3, 8, 75), (5, 9, 86):}|`

Answer» Given determinant
`=|{:(2, 7, 65), (3, 8, 75), (5, 9, 86):}|`
`=|{:(2, 7, 2), (3, 8, 3), (5, 9, 5):}| " "["applying" C_(3) to C_(3) - 9C_(2)]`
`=0 " " [because C_(1) " and " C_(3) " are identical"].`
344.

Using the property of determinants and without expanding, prove that:`|[2, 7, 65],[ 3 ,8 ,75 ],[4, 9,86]|=0`

Answer» `L.H.S. = |[2,7,65],[3,8,75],[5,9,86]|`
Applying `C_3->C_3-C_1`
`= |[2,7,63],[3,8,72],[5,9,81]|`
`=9|[2,7,7],[3,8,8],[5,9,9]|`
Applying `C_3->C_3-C_2`
`=9|[2,7,0],[3,8,0],[5,9,0]|`
If in a determinant, all elements in a row or column are `0`, then value of that determinant is `0`.
Here `C_3` is `0`.
`:.` Value of above determinant is `0`.
`:. 9|[2,7,0],[3,8,0],[5,9,0]| = 9**0 = 0 = R.H.S.`
345.

`" if " Delta_(r) = |{:(r,,612,,915),(101r^(2),,2r,,3r),(r,,(1)/(r),,(1)/(r^(2))):}|` then the value of `lim_( n to oo) .(1)/(n^(3)) (Sigma_(r=1)^(n) Delta_(r) " is " "____"`

Answer» Correct Answer - 2
`Detla_(r )= |{:(r,,612,,915),(101r^(2),,2r,,3r),(r,,(1)/(r),,(1)/(r^(2))):}|` (Taking r common from `C_(1) " and " R_(2)`)
`= |{:(1,,612,,915),(101,,2,,3),(r^(2),,r,,1):}|`
` :. .underset(h to oo)("lim") .(1)/(n^(3)) .overset(n)underset(r=1)(Sigma) |{:(1,,612,,915),(101,,2,,3),(r^(2),,r,,1):}|`
`= underset( h to oo)("lim") .(1)/(n^(3)) . |{:(1,,612,,915),(101,,2,,3),((n(n+1)(2n+1))/(6),,(n(n+1))/(2),,n):}|`
` = underset(h to oo) ("lim") |{:(1,,612,,915),(101,,2,,3),(((n+1)(2n+1))/(6n^(2)),,(n+1)/(2n^(2)),,(1)/(n^(2))):}|`
`= |{:(1,,612,,915),(101,,2,,3),((1)/(3),,0,,0):}|`
`=(1)/(3) (3 xx 612 -2xx 915)`
`=2`
346.

`" Let " Delta_(r)=|{:(r-1,,n,,6),((r-1)^(2),,2n^(2),,4n-2),((r-1)^(2),,3n^(3),,3n^(2)-3n):}|. " Show that " Sigma_(r=1)^(n) Delta_(r)` is constant.

Answer» Since `c_(1)` has variable terms and `c_(2) " and " c_(3)` have constant terms summation is taken to `C_(1)` Therefore,
`overset(n)underset(r=1)(Sigma) |{:(overset(n)underset(1)(Sigma)(r-1),,n,,6),(overset(n)underset(1)(Sigma)(r-1)^(2),,2n^(2),,4n-2),(overset(n)underset(1)(Sigma)(r-1)^(3),,3n^(3),,3n^(2)-3n):}|`
`|{:((1)/(2)(n-1)n,,n,,6),((1)/(6) (n-1)(2n-1),,2n^(2),,4n-2),((1)/(4) (n-1)^(2)n^(2),,3n^(3),,3n^(2)-3n):}|`
Taking `(1)/(12) n(n-1)` common from `C_(1) " and " n` common from `C_(2)` we get
` Sigma Delta_(r)=(1)/(12)n^(2)(n-1) xx|{:(6,,1,,6),(2(2n-1),,2n,,2(2n-1)),(3n(n-1),,3n^(2),,3n(n-1)):}|`
`=0 " Which is constant " [:. C_(1) " and " C_(3) " are identical "]`
347.

`D_(r) = |(2^(r -1),2.3^(r-1),4.5^(r -1)),(alpha,beta,gamma),(2^(n) -1,3^(n) -1,5^(n) -1)|`. Then, the value of `Sigma_(r=1)^(n) D_(r)` isA. `alpha beta gamma`B. `2^(n) alpha + 2^(n) beta + 4^(n) gamma`C. `2 alpha + 3 beta + 4 gamma`D. none of these

Answer» Correct Answer - D
348.

State whether the matrix \(\begin{bmatrix}2 & 3 \\6 & 4 \\\end{bmatrix}\) is singular or non-singular.

Answer»

Let A = \(\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ \end{bmatrix}\)

Then |A| = \(\begin{bmatrix} 2 & 3 \\ 6 & 4 \\ \end{bmatrix}\)

= 2 × 4 - 3 × 6

= -10 (Expanding along R1)

Since |A| ≠ 0, therefore A is a non-singular matrix.

349.

` " if " Delta_(r) =|{:(2^(r-1),,2xx3^(r-1),,4xx5^(r-1)),(alpha,,beta,,gamma),(2^(n)-1,,3^(n)-1,,5^(n)-1):}|` then find the value of `Sigma_(r=1)^(n) Delta r`.

Answer» `overset(n)underset(r=1)(Sigma)2^(r-1)=1+2+2^(2)+.......+2^(n+1)=1xx((2^(n)-1))/(2-1)=2^(n)-1`
`overset(n)underset(r=1)(Sigma)2xx3^(r-1)=2(1+3+3^(2)+...+3^(n-1))=(2(3^(n)-1))/(3-1)=3^(n)-1`
`overset(n)underset(r=1)(Sigma)4xx5^(r-1)=4(1+5+5^(2)+....+5^(n)-1)=(4(5^(n)-1))/(5-1)=5^(n)-1`
`:. overset(n)underset(r=1)(Sigma)Delta_(r ) =|{:(2^(n-1),,3^(n-1),,5^(n-1)),(alpha,,beta,,gamma),(2^(n-1),,3^(n-1),,5^(n-1)):}|=0`
350.

Show that each of the following systems of linear equations has infinite number of solutions and solve : x + 2y = 5 3x + 6y = 15

Answer»

Given : - 

Two equation 

x + 2y = 5 and 3x + 6y = 15 

Tip : - We know that 

For a system of 2 simultaneous linear equation with 2 unknowns 

(i) If D ≠ 0, then the given system of equations is consistent and has a unique solution given by

  x = \(\frac{D_1}{D}\), y = \(\frac{D_2}{D}\) 

(ii) If D = 0 and D1 = D2 = 0, then the system is consistent and has infinitely many solution. 

(iii) If D = 0 and one of D1 and D2 is non – zero, then the system is inconsistent. 

Now, 

We have, 

x + 2y = 5 

3x + 6y = 15 

Lets find D

⇒ D = \(\begin{vmatrix} 1 & 2 \\[0.3em] 3 & 6 \\[0.3em] \end{vmatrix}\)

⇒ D = – 6 – 6 

⇒ D = 0

Again, 

D1 by replacing 1st column by B 

Here,

B = \(\begin{vmatrix} 5 \\[0.3em] 15\\[0.3em] \end{vmatrix}\)

⇒ D1\(\begin{vmatrix} 5 & 2 \\[0.3em] 15 & 6 \\[0.3em] \end{vmatrix}\)

⇒ D1 = 30 – 30 

⇒ D1 = 0

And, 

D2 by replacing 2nd column by B 

Here,

B = \(\begin{vmatrix} 5 \\[0.3em] 15\\[0.3em] \end{vmatrix}\)

⇒ D2\(\begin{vmatrix} 1& 5 \\[0.3em] 3 & 15 \\[0.3em] \end{vmatrix}\)

⇒ D2 = 15 – 15 

⇒ D2 = 0 

So, here we can see that

D = D1 = D2 = 0 

Thus, 

The system is consistent with infinitely many solutions. 

Let 

y = k 

then, 

⇒ x + 2y = 5 

⇒ x = 5 – 2k 

By changing value of k you may get infinite solutions.