InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 401. |
By using properties of determinants. Show that:(i) `|[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3` (ii) `|[x+y+2z, x, y],[ z, y+z+2x, y],[ z, x, z+x+2y]|=2(x+y+z)^3` |
|
Answer» (i) `L.H.S. = |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|` Applying `R_1->R_1+R_2+R_3` `=|[a+b+c,a+b+c,a+b+c],[2b,b-c-a,2b],[2c,2c,c-a-b]|` `=(a+b+c)|[1,1,1],[2b,b-c-a,2b],[2c,2c,c-a-b]|` Applying `C_2->C_2-C_1 and C_3->C_3-C_1` `=(a+b+c)|[1,0,0],[2b,-(a+b+c),0],[2c,0,-(a+b+c)]|` `=(a+b+c)(-(a+b+c))(-(a+b+c))|[1,0,0],[2b,1,0],[2c,0,1]|` `=(a+b+c)^3[1(1-0)-0+0]` `= (a+b+c)^3 = R.H.S.` Following the same steps, we can prove the second part. |
|
| 402. |
Using properties of determinants, prove thefollowing:`|xx+y x+2y x+2y xx+y x+y x+2y x|=9y^2(x+y)` |
| Answer» Apply `R_(1) to R_(1) + R_(2) + R_(3) "and take 3(x+y) common from"R_(1)` | |
| 403. |
Write Minors and Cofactors of the elements of following determinants:(i) `|2-4 0 3|` (ii) `|a c b d|` |
|
Answer» `Let A=|{:(2,-4),(0,3):}|` ltbrtgt Minors `M_(11)=3,M_(12)=0,M_(21)=-4,M_(22)=2` Cofactors `A_(11)=(-1)^(1+1)M_(11)=3` `A_(21)=(-1)^(2+1)M_(21)=4` `A_(22)=(-1)^(2+2)M_(22)=2` (ii) `Let A=|{:(a,c),(b,d):}|` Minors `M_(11)=d,M_(12)=b,` `M_(21)=c, M_(22)=a` Cofactors `A_(11) =(-1)^(1+1)M_(11)=d` `A_(12)=(-1)^(1+2)M_(21)=-c` `A_(22)=(-1)^(2+2)M_(22)=a` |
|
| 404. |
By using properties of determinants. Show that:(i) `|x+4 2x2x2xx+4 2x2x2xx+4|=(5x-4)(4-x)^2`(ii)`|y+k y y y y+k y y y y+k|=k^2(2ydotk)^2` |
|
Answer» `|{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=|{:(5x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|` `(R_(1)toR_(1)+R_(2)+R_(3))` `=(5x+4)|{:(1,1,1),(2x,x+4,2x),(2x,2x,x+4):}|` `=(5x+4)|{:(0,0,1),(0,4-x,2x),(x-4,x-4,x+4):}|` `(C_(1)toC_(1)-C_(3),C_(2)toC_(2)-C_(3))` `=(5x+4)(40x)(4-x)|{:(0,0,1),(0,1,2x),(-1,-1,x+4):}|` `=(5x+4)(4-x)^(2).1|{:(0,1),(-1,-1):}|` `=(5x+4)(e-x)^(2)` =R.H.S. (ii) `L.H.S.=|{:(y+k,y,y),(y,y+k,y),(y,y,y+k):}|` `=|{:(3y+k,3y+k,3y+k),(y,y+k,y),(y,y,y+k):}|` `(R_(1)toR_(1)+R_(2)+R_(2))` `=(3y+k)|{:(1,1,1),(y,y+k,y),(y,y,y+k):}|` `=(3y+k)|{:(1,0,1),(0,k,y),(-k,-k,y+k):}|` `(C_(1)toC_(1)-C_(3),C_(2)toC_(2)-C_(3))` `=(3y+k).1|{:(0,k),(-k,-k):}|` (Expanding along `R_(1)`) `=(3y+k)(0+K^(2))` `=K^(2)(3y+k)=R.H.S` |
|
| 405. |
Using properties ofdeterminants, prove the following:`|1xx^2x^2 1xxx^2 1|=(1-x^3)^2` |
|
Answer» `L.H.S.=|{:(1,x,x^(2)),(x^(2),1,x),(x,x^(2),1):}|=|{:(1+x+x^(2),x,x^(2)),(x^(2)+1+x,1,x),(x+x^(2)+1,x^(2),1):}|` `(C_(1)toC_(1)+C_(2)+C_(3))` `=(1+x+x^(2))|{:(1,x,x^(2)),(1,1,x),(1,x^(2),1):}|` `=(1+x+x^(2))|{:(1,x,x^(2)),(0,1-x,x-x^(2)),(0,x^(2)-x,1-x^(2)):}|` `(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))` `=(1+x+x^(2))|{:(1,x,x^(2)),(0,1-x,x(1-x)),(0,-x(1-x),(1-x)(1+x)):}|` `=(1+x+x^(2))(1-x)(1-x)|{:(1,x,x^(2)),(0,1,x),(0,-x,1+x):}|` `=(1+x+x^(2))(1-x).1|{:(1,x),(-x,1+x):}|` `=(1+x+x^(2))(1-x)^(2)(1+x+x^(2))` `=[(1+x+x^(2))(1-x)^(2)]=(1-x^(3))^(2)` R.H.S. |
|
| 406. |
Usingproperties of determinants, prove that`|b+c q+r y+z c+a r+p z+x c+b p+q x+y|=2 |a p x b q y c r z|` |
|
Answer» We have, `LHS = |[b+c,c+a, a+b],[q+r, r+p, p+q],[y+z, z+x,x+y]|` `=2 |[a+b+c,c+a, a+b],[p+q+r, r+p, p+q],[x+y+z, z+x,x+y]|["applying"C_(1) to (C_(1) + C_(2) + C_(3))"and taking out 2 common from"C_(1)]` `=2 |[a+b+c,-b, -c],[p+q+r, -q, -r],[x+y+z, -y,-z]|[C_(2) to (C_(2) -C_(1)), C_(3) to (C_(3) -C_(1))]` `=2(-1)(-1) * |[a+b+c,b, c],[p+q+r, q, r],[x+y+z, y,z]|["taking out(-1) common from each one of "C_(2) "and"C_(3)]` `=2 |[a,b, c],[p, q, r],[x, y,z]| = RHS ["applying "C_(1) to C_(1) -(C_(2) + C_(3))]` Hence, LHS=RHS. |
|
| 407. |
If `Delta_(1)=|[a,b, c],[x, y, z],[p,q ,r]|"and "Delta_(2) |[q,-b, y],[-p, a, -x],[r,-c ,z]|` then without expanding `Delta_(1) " and "Delta_(2), "prove that "Delta_(1) + Delta_(2) =0` |
|
Answer» We have `Delta_(2)=|[q,-b, y],[-p, a, -x],[r,-c ,z]|` `=(-1)*|[q,-b, y],[p, -a, x],[r,-c ,z]| ["taking (-1) common from"R_(2)]` `=(-1)(-1)*|[q,b, y],[p, a, x],[r,c ,z]| ["taking (-1) common from"C_(2)]` `=|[q,b, y],[p, a, x],[r,c ,z]|=|[q,p, r],[b, a, c],[y,x ,z]| ["interchanging rows and columns"]` `=(-1)|[p,q, r],[a, b, c],[x,y ,z]|["applying"C_(1) harr C_(2)]` `=(-1)(-1)*|[a,b, c],[p, q, r],[x,y ,z]|["applying"R_(1) harr R_(2)]` `=|[a,b, c],[p, q, r],[x,y ,z]|` `=(-1) *|[a,b, c],[x, y, z],[p,q ,r]| =-Delta_(1) ["applying "R_(2) harr R_(3)]` Thus, `Delta_(2) = -Delta_(1) " and hence `Delta_(1) + Delta_(2) =0` |
|
| 408. |
By using properties of determinants. Show that:(i) `|a-b-c2a2a2bb-c-a2b2c2cc-a-b|=(a+b+c)^3` (ii) `|x+y+2z x y z y+z+2x y z x z+x+2y|=2(x+y+z)^3` |
|
Answer» `|{:(a-b-c,2a,2a),(ab,b-c-a,2a),(2c,2c,c-a-b):}|=|{:(-(a+b+c),0,2a),(a+b+v,-(a+b+c),ab),(0,a+b+c,c-a-b):}|` `(C_(1)toC_(1)-C_(2),C_(2)toC_(2)-C_(3))` `=(a+b+c)^(2)|{:(-1,0,2a),(0,-1,2b+2a),(0,1,c-a-b):}|` `(R_(2)toR_(2)+R_(1))` `=(a+b+c)^(2).(-1)|{:(-1,2b+2a),(1,c-a-b):}|` (Expanding along `C_(1)`) `=(a+b+c)^(2)(-1)(-c+a+b-2a-ab)` `=(a+b+c)^(2)(-1)(-a-b-c)` `=(a+b+c)^(2)(a+b+c)` `=(a+b+c)=R.H.S.` `|{:(x+y+2s,x,y),(z,y+z+2z,y),(z,x,z+x+2y):}|=|{:(2x+2y+2z,x,y),(2x+2y+2z,y+z+2x,y),(2x+2y+2z,z,z+x+2y):}|` `(C_(1)toC_(1)+C_(2)+C_(3))` `=(2x+2y+2z)|{:(1,x,y),(1,y+z+2x,u),(1,x,z+x+2y):}|` `=2(x+y+z)|{:(1,x,y),(1,y+z+2x,0),(0,0,x+y+z):}|` `(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))` `=2(x+y+z).1|{:(x+y+z,0),(0,x+y+z):}|` (Expanding along `C_(1)`) `=2(x+y+z)^(3)=R.H.S` |
|
| 409. |
Prove that ` /_ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2) [[a,c,p],[b,d,q],[u,v,w]] ` |
|
Answer» We have `LHS=|[a+bx, c+dx, p+qx],[ax+b,cx+d,px+q],[u, v, w]|` `=|[a-ax^(2), c-cx^(2), p-px^(2)],[ax+b,cx+d,px+q],[u, v, w]| ["applying"R_(1) to R_(1) -xR_(2)]` `=|[a(1-x^(2)), c(1-x^(2)), p(1-x^(2))],[ax+b,cx+d,px+q],[u, v, w]|` `=(1-x^(2))|[a, c, p],[ax+b,cx+d,px+q],[u, v, w]| ["taking out "(1-x^(2))"common from"R_(1)]` `=(1-x^(2))|[a, c, p],[b, d, q],[u, v, w]| ["applying "R_(2) to R_(2) -xR_(1)]` =RHS. Hence, LHS = RHS. |
|
| 410. |
Write minros and cofactros of the elements of the determinants: (i) `|{:(1,0,4),(3,5,-1),(0,1,2):}|` |
|
Answer» (i) `Let A=|{:(1,0,0),(0,1,0),(0,0,1):}|` Minors `M_(11)=|{:(1,0),(0,1):}|=1-0=1` `M_(12)=|{:(0,0),(0,1):}|=0-0=0,M_(13)=|{:(0,1),(0,0):}|=0-0=0` `M_(21)=|{:(0,0),(0,1):}|=0-0=0,M_(22)=|{:(1,0),(0,1):}|=1-0=0,` `M_(23)=|{:(1,0),(0,0):}|=0-0=0` `M_(33)=|{:(1,0),(0,1):}|=1-0=1 Cofactors` `A_(11)=(-1)^(1+1)M_(11)=1,A_(12)=(-1)^(1+2)M_(12)=0` `A_(13)=(-1)^(1+3)M_(13)=0` `A_(21)=(-1)^(2+1)M_(21)=0,A_(22)=(-1)^(2+2)M_(22)=1` `A_(23)=(-1)^(2+3)M_(23)=0` `A_(31)=(-1)^(3+1)M_(31)=0,A_(32)=(-1)^(3+2)M_(32)=0`, `A_(33)=(-1)^(3+3)M_(33)=1` `Let A= |{:(1,0,4),(3,5,-1),(0,1,2):}|` Minors `=|{:(5,-1),(1,2):}|=10+1=11,` `M_(12)=|{:(3,-1),(0,2):}|=6-0=6, M_(13)=|{:(3,5),(0,1):}|=3-0=3` `M_(23)=|{:(1,0),(0,1):}|=1-0=1` `M_(31)=|{:(0,4),(5,-1):}|=0-20-=-20` `M_(32)=|{:(1,4),(3,-1):}|=-1-12=-13`, `M_(33)=|{:(1,0),(3,5):}|=5-0=5` Cofactors `A_(11)=(-1)^(1+1)M_(11)=11` `A_(12)=(-1)^(2+1)M_(21)=4,A_(22)=(-1)^(2+2)M_(22)=2`, `A_(23)(-1)^(3+1)M_(31)=-20,A_(32)=(-1)^(3+2)M_(32)=13,` `A_(33)=(-1)^(3+3)M_(33)=5` |
|
| 411. |
Show that `Delta =Delta_(1)`, where `Delta = |[Ax,x^(2), 1],[By, y^(2), 1],[Cz, z^(2),1]| "and "Delta_(1) = |[A,B, C],[x, y, z],[zy, zx,xy]|` |
|
Answer» We have, `Delta = |[Ax,x^(2), 1],[By, y^(2), 1],[Cz, z^(2),1]|` `= |[Ax,By, Cz],[x^(2), y^(2), z^(2)],[1,1 ,1]| ["interchanging the rows and columns"]` `=(xyz) |[A,B, C],[x, y, z],[(1)/(x),(1)/(y) ,(1)/(z)]| ["applying" C_(1) to (1)/(x) C_(1), C_(2) to (1)/(y) C_(2), C_(3) to (1)/(z)C_(3) " and multiplying the whole determinant by xyz"]` `=((xyz))/((xyz))* |[A,B, C],[x, y, z],[yz,zx ,xy]| ["applying" R_(3) to (xyz)R_(3)" and dividing the whole determinant by xyz"]` `=|[A,B, C],[x, y, z],[zy,zx ,xy]| =Delta_(1)` Hence, `Delta = Delta_(1)` |
|
| 412. |
The sum of the products of the elements of any row of a matrix A with the corresponding cofactors of the elements of the same row is always equal toA. `|A|`B. `(1)/(2) |A|`C. 1D. 0 |
| Answer» Correct Answer - A | |
| 413. |
Using properties of determinants prove that:\(\begin{vmatrix}1& b+c & b^2+c^2 \\[0.3em]1& c+a &c^2+a^2\\[0.3em]1 & a+b& a^2+b^2\end{vmatrix}\) = (a-b)(b-c)(c-a)|(1,b + c,b^2 + c^2)(1,c + a,c^2 + a^2)(1, a + b, a^2 + b^2)| = (a-b)(b-c)(c-a) |
|
Answer» \(\begin{vmatrix} 1& b+c & b^2+c^2 \\[0.3em] 1& c+a &c^2+a^2\\[0.3em] 1 & a+b& a^2+b^2 \end{vmatrix}\) = \(\begin{vmatrix} 0& b-c & b^2-c^2 \\[0.3em] 0& c-a &c^2-a^2\\[0.3em] 1 & a+b& a^2+b^2 \end{vmatrix}\)[R1’ = R1 - R2 & R2’ = R2 - R3] = \(\begin{vmatrix} 0& b-c & (b-a)(b+a) \\[0.3em] 0& c-a &(c-b)(c+b)\\[0.3em] 1 & a+b& a^2+b^2 \end{vmatrix}\) = (b - a)(c - b)\(\begin{vmatrix} 0& 1 & b+a \\[0.3em] 0& 1 &c+b\\[0.3em] 1 & a+b& a^2+b^2 \end{vmatrix}\) [R1’ = R1/(b - a) & R2’ = R2/(c - b)] = (b - a)(c - b)[0 + 0 + 1{(c + b) - (b + a)}][expansion by first column] = (a - b)(b - c)(c - a) |
|
| 414. |
Using Cofactors of elements of third column, evaluate `Delta=|1x y z1y z x1z x y|` |
|
Answer» `Delta=|{:(1,x,yz),(1,y,zx),(1,z,xy):}|` Cofactors of the elements of third row `A_(13)=(-1)^(1+3)|{:(1,y),(1,z):}|=z-y` `A_(23)=(-1)^(2+3)|{:(1,x),(1,z):}|=(z-x)=x-z` `A_(33)=(-1)^(3+3)|{:(1,x),(1,y):}|=y+x` `therefore" "Delta=a_(13)A_(13)+a_(23)A_(23)+a_(33)A_(33)` `=yz(z-y)+zx(x-z)+xy(y-x)` `=yz^(2)-y^(2)z+zx^(2)-z^(2)x+xy^(2)-x^(2)y` |
|
| 415. |
Using Cofactors of elements of second row, evaluate `Delta=|5 3 8 2 0 1 1 2 3|` |
|
Answer» `Delta=|{:(5,3,8),(2,0,1),(1,2,3):}|.` Cofactors of the elements of second row `A_(21)=(-1)^(2+1)|{:(3,8),(2,3):}|=-(9-16)=7` `A_(22)=(-1)^(2+2)|{:(5,8),(1,3):}|=(15-8)=7` `A_(23)=(-1)^(2+3)|{:(5,3),(1,2):}|=(10-3)=7` `therefore" "Delta=a_(21)A_(21)+a_(22)A_(22)+a_(23)A_(23)` `=2xx7+0xx7+xx(-7)` =14+0-7=7 |
|
| 416. |
if `A_(1) ,B_(1),C_(1) …….` are respectively the cofactors of the elements `a_(1) ,b_(1),c_(1)……` of the determinant `Delta = |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}|, Delta ne 0 ` then the value of `|{:(B_(2),,C_(2)),(B_(3),,C_(3)):}|` is equal toA. `a_(1)^(2)Delta`B. `a_(1)Delta`C. `a_(1)Delta^(2)`D. `a_(1)^(2)Delta^(2)` |
|
Answer» Correct Answer - B `B_(2) =a_(1)c_(3) -a_(3)c_(1),C_(2)=-(a_(1)b_(3)-a_(3)b_(1))` `B_(3) =-(a_(1)C_(2) -a_(2)c_(1)) ,C_(3)=a_(1)b_(2)-a_(2)b_(1)` ` :. |{:(B_(2),,C_(2)),(B_(3),,C_(2)):}|= |{:(a_(1)C_(3)-a_(3)c_(1),,-a_(1)b_(3)+a_(3)b_(1)),(-a_(1)c_(2)+a_(2)c_(1),,a_(1)b_(1)-a_(2)b_(1)):}|` `=|{:(a_(1)c_(3),,-a_(1)b_(3)),(-a_(1)c_(2),,a_(1)b_(2)):}|+ |{:(a_(1)C_(3),,a_(3)b_(1)),(-a_(1)c_(2),,-a_(2)b_(1)):}|` `+|{:(-a_(3)C_(1),,-a_(1)b_(3)),(-a_(1)C_(2),,a_(1)b_(2)):}|+ |{:(-a_(3)C_(1),,a_(3)b_(1)),(a_(2)c_(1),,-a_(2)b_(1)):}|` ` =a_(1)^(2) |{:(C_(3),,-b_(3)),(-c_(2),,b_(2)):}|+a_(1)b_(1) |{:(c_(3),,a_(3)),(-c_(2),,-a_(2)):}|` `+a_(1)c_(1) |{:(-a_(3),,-b_(3)),(a_(2),,b_(2)):}|+b_(1)c_(1) |{:(-a_(3),,a_(3)),(a_(2),,-a_(2)):}|` `=a_(1){a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))` `+c_(1)(a_(2)b_(3)-a_(3)b_(2))}` ` =a_(1)|{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| =a_(1) Delta` |
|
| 417. |
Without expanding evaluate the determinant `|(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|` |
|
Answer» Correct Answer - A `C_(3) to C_(3) + ("sin"delta)C_(1) -("cos" delta)C_(2)` makes all zeros in `C_(3)` and hence `Delta = 0` |
|
| 418. |
Using properties of determinants. Prove that `|(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0` |
|
Answer» `L.H.S. = |[sin alpha, cos alpha, cos(alpha+delta)],[sin beta, cos beta, cos(beta+delta)],[sin gamma, cos gamma, cos(gamma+delta)]|` `= |[sin alpha, cos alpha, cosalphacosdelta - sinalphasindelta],[sin beta, cos beta, cosbetacosdelta - sinbetasindelta],[sin gamma, cos gamma, cosgammacosdelta - singammasindelta]|` Applying `C_3 ->C_3-cosdeltaC_2+sindeltaC_1` `= |[sin alpha, cos alpha, 0],[sin beta, cos beta, 0],[sin gamma, cos gamma, 0]|` If in a determinant, all elements in a row or column are `0`, then value of that determinant is `0`. Here, `C_3` is `0`. `:. |[sin alpha, cos alpha, 0],[sin beta, cos beta, 0],[sin gamma, cos gamma, 0]| = 0 = R.H.S.` |
|
| 419. |
Using Cofactors of elements of second row, evaluate `Delta=|(5, 3, 8),( 2, 0, 1),( 1, 2 ,3)|` |
|
Answer» Here, `A = |[5,3,8],[2,0,1],[1,2,3]|` First we will find minor of second row. `M_21 = 9-16 = -7` `M_22 = 15-8 = 7` `M_23 = 10-3 = 7` Now, we will find the cofactors using these minors. `A_21 = (-1)^(2+1)M_21 = -1(-7) = 7` `A_22 = (-1)^(2+2)M_22 = 1(7) = 7` `A_23 = (-1)^(2+3)M_23 = -1(7) = -7` Now, `a_21 = 2` `a_22 = 0` `a_23 =1` `:. Delta = a_21A_21+a_22A_22+a_23A_23` `=>Delta = 2(7)+0(7)+1(-7) = 14+0-7 = 7` `:. Delta = 7.` |
|
| 420. |
Using properties of determinants. Prove that`|[1 ,1+p,1+p+q],[2, 3+2p,4+3p+2q],[3, 6+3p, 10+6p+3q]|=1` |
|
Answer» `L.H.S. = |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|` Applying `R_2->R_2-2R_1` and `R_3->R_3-3R_1` `=|[1,1+p,1+p+q],[0,1,2+p],[0,3,7+3p]|` Applying `R_3->R_3-3R_2` `= |[1,1+p,1+p+q],[0,1,2+p],[0,0,1]|` `=[1(1-0)-0+0]` `=1 = R.H.S.` |
|
| 421. |
Evaluate the following determinants:(i) \(\begin{vmatrix} x& -7 \\[0.3em] x & 5x + 1 \end{vmatrix}\)(ii) \(\begin{vmatrix} cos θ& -sin θ\\[0.3em]sin θ& cos θ\end{vmatrix}\)(iii) \(\begin{vmatrix} cos 15°& sin 15°\\[0.3em]sin 75°& cos 75°\end{vmatrix}\)(iv) \(\begin{vmatrix} a + ib & c + id\\[0.3em]-c + id& a - ib\end{vmatrix}\) |
|
Answer» (i) |A| = x (5x + 1) – (–7) x |A| = 5x2 + 8x (ii) |A| = cos θ × cos θ – (–sin θ) x sin θ |A| = cos2θ + sin2θ As we know that cos2θ + sin2θ = 1 |A| = 1 (iii) |A| = cos15° × cos75° + sin15° x sin75° As we know that cos (A – B) = cos A cos B + Sin A sin B On substituting this we get, |A| = cos (75 – 15)° |A| = cos60° |A| = 0.5 (iv) |A| = (a + ib) (a – ib) – (c + id) (–c + id) = (a + ib) (a – ib) + (c + id) (c – id) = a2 – i2 b2 + c2 – i2 d2 As we know that i2 = -1 = a2 – (–1) b2 + c2 – (–1) d2 = a2 + b2 + c2 + d2 |
|
| 422. |
Evaluate the following :\(\begin{bmatrix}0&xy^2& xz^2 \\[0.3em]x^2y & 0 &yz^2 \\[0.3em]x^2y & zy^2& 0\end{bmatrix}\) |
|
Answer» Let Δ = \(\begin{bmatrix}0&xy^2& xz^2 \\[0.3em]x^2y & 0 &yz^2 \\[0.3em]x^2y & zy^2& 0\end{bmatrix}\) = 0(0 – y3z3) – xy2(0 – x2yz3) + xz2(x2y3z – 0) = 0 + x3y3z3 + x3y3z3 = 2x3y3z3 So, Δ = 2x3y3z3 |
|
| 423. |
Using co-factors of elements of 3rd columnΔ = \(\begin{vmatrix}1 & x & yz \\[0.3em]1 &y &zx \\[0.3em]1 &z &xy\end{vmatrix}\) |
|
Answer» M13 = (z – y) M23 = (z-x) M33 = (y - x) C13 = (z - y) C23 = -(z - n), C33 = (y – x) Δ = yz (z – y) + zx{-(z – x)} + xy (y – x) = yz2 – y2z – z2x + zx2 + xy2 – x2y x2 (z – y) + z (y2 – z2) + yz (z – y) x2(z – y) + x (y+ z) (y- z) + yz (z – y) (z – y) {x2 – x (y + z) + yz} (z – y) {x2 – xy – xz + yz} (z – y) {x (x – y) – z (x – y)} (z – y) (x – y) (x – z) = (z – y) (y – x) (z – x) |
|
| 424. |
Evaluate:(i) \(\begin{vmatrix}2&3&-2\\[0.3em]3&4&0\\[0.3em]1&-1&5\end{vmatrix}\)(ii) \(\begin{vmatrix}3&-1&2\\[0.3em]1&3&-2\\[0.3em]1&4&3\end{vmatrix}\)(iii) \(\begin{vmatrix}2&0&0\\[0.3em]0&4&0\\[0.3em]0&0&5\end{vmatrix}\)(iv) \(\begin{vmatrix}2&-1&1\\[0.3em]3&1&-2\\[0.3em]1&4&-1\end{vmatrix}\)(v) \(\begin{vmatrix}1&2&-1\\[0.3em]3&1&-4\\[0.3em]1&0&-2\end{vmatrix}\) |
|
Answer» (i) \(\begin{vmatrix}2&3&-2\\[0.3em]3&4&0\\[0.3em]1&-1&5\end{vmatrix}\) 2(20 + 0) -3 (15 – 0) -2(-3 -4) 2(20) -3(15) -2(-7) 40 – 45 + 14 = 9 (ii) \(\begin{vmatrix}3&-1&2\\[0.3em]1&3&-2\\[0.3em]1&4&3\end{vmatrix}\) = 3(9+8) + 1(3 + 2) +2(4 – 3) = 3(17) + 1(5) + 2(1) = 51 + 5 + 2 = 58 (iii) \(\begin{vmatrix}2&0&0\\[0.3em]0&4&0\\[0.3em]0&0&5\end{vmatrix}\) 2(20 – 0) – 0 + 0 = 40 (iv) \(\begin{vmatrix}2&-1&1\\[0.3em]3&1&-2\\[0.3em]1&4&-1\end{vmatrix}\) 2(-1 + 8) + 1(-3 + 2) +1(12 – 1) 2(7) + 1(-1) +11 =14 – 1 + 11 = 24 (v) \(\begin{vmatrix}1&2&-1\\[0.3em]3&1&-4\\[0.3em]1&0&-2\end{vmatrix}\) = 1(-2 + 0) -2(-6 + 4) -1(0 – 1) = -2 – 2(-2) + 1 = -2 + 4 + 1 = 3. |
|
| 425. |
Choose the correct answer from the following : If A is a matrix of order `3xx3" and "|A|=6`, then |adj.A|A. 36B. 216C. 729D. None of these |
| Answer» Correct Answer - A | |
| 426. |
Let `omega`be a complex number such that `2omega+1=z`where `z=sqrt(-3.)``If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k ,`then`k`is equal to :`-1`(2) `1`(3) `-z`(4) `z`A. 1B. `-z`C. zD. -1 |
|
Answer» Correct Answer - 2 Here `omega ` is complex cube root of unity Applying `R_(1) to R_(1)+R_(2)+R_(3),` the given matrix reduces to ` |{:(3,,0,,0),(1,,-omega^(2)-1,,omega^(2)),(1,,omega^(2),,omega):}|= 3(-1-omega -omega) = -3z` `rArr k=-z` |
|
| 427. |
If the system of linear equationsx+ky+3z=03x+ky-2z=02x+4y-3z=0has a non-zero solution (x,y,z) then `(xz)/(y^2)` is equal toA. 30B. -10C. 10D. -30 |
|
Answer» Correct Answer - 3 Given system of equations `x+ky+3z=0` `3x+ky -2x =0` `2x+4y -3z =0` Eliminating from first two equations we get `2x-5z=0 " or " 2x=5z` ` :. X=5lambda , z= 2lambda` from equation (iii) we have `10 lambda +4y-6lambda= 0 " or " y=-lambda` `:. (xz)/(y^(2)) =((5lambda)(2lambda))/((-lambda)^(2)) =10` |
|
| 428. |
The number of values of k for which the linear equations`4x""+""k y""+""2z""=""0``k x""+""4y""+""z""=""0``2x""+""2y""+""z""=""0`posses a non-zero solution is :(1) 3 (2) 2 (3) 1 (4) zeroA. zeroB. 3C. 2D. 1 |
|
Answer» Correct Answer - 3 For non-trivial solution of the given system of linear equations `|{:(4,,k,,2),(k,,4,,1),(2,,2,,1):}|=0` `rArr 8+ k (2-k) + 2 (2k -8) =0` `rArr -k^(2) +6k -8 =0` `rArr k^(2) -6k +8=0` `rArr k=2,4` Clearly there exists two values of k . |
|
| 429. |
For a real number `alpha,`if the system `[1alphaalpha^2alpha1alphaalpha^2alpha1][x y z]=[1-1 1]`of linear equations, has infinitely many solutions, then `1+alpha+alpha^2=` |
|
Answer» Correct Answer - 1 Since the system of equations hasss infinitely many solutions `|{:(1,,alpha,,alpha^(2)),(alpha,,1,,alpha),(alpha^(2),,alpha,,1):}|=0` `rArr 1(1-alpha^(2)) -alpha(alpha-alpha^(3)) +alpha^(2)(alpha^(2)-alpha^(2))=0` `rArr (1-alpha^(2)) -alpha^(2) +alpha^(4)=0` `rArr (alpha^(2) -1)^(2)=0` `rArr alpha= +-1` For `alpha=1` we get `x+y+z=1 " and " x+y+z=-1` Hence system has no solution . Fora `alpha=-1` all three equations become x-y+z=1 which represents coincident planes. `:. 1+alpha+alpha^(2) =1` |
|
| 430. |
If the determinant \(\begin{vmatrix} a & b & 2a\,\alpha+3b \\[0.3em] b& c &2b\,\alpha+3c \\[0.3em] 2a\,\alpha+3b & 2b\,\alpha+3c & 0 \end{vmatrix}\) , thenA. a, b, c are in H.P. B. α is a root of 4ax2 + 12bx + 9c = 0 or, a, b, c are in G.P. C. a, b, c are in G.P. only D. a, b, c are in A.P. |
|
Answer» B. α is a root of 4ax2 + 12bx + 9c = 0 or, a, b, c are in G.P. Expend the determinats : a[-(2bα+3c)2 ]-b[-(2bα+3c)(2aα+3b)]+ (2aα+3b)[b(2bα+3c)-c(2aα+3b)] = 0 -a(2bα+3c)2 + b(2bα+3c)(2aα+3b)+(2aα+3b)[2b2α+3bc-3bc-2acα] = 0 (2bα+3c) [-2abα-3ac+2abα+3b2]+ (2aα+3b)(2α)( b2 -ac) = 0 (2bα+3c) [-3ac +3b2 ]+ (2aα+3b)(2α)( b2 - ac) = 0 (b2 – ac)[4aα2 + 12bα + ac] = 0 CASE 1→ (b2 - ac) = 0 b2 = ac {abc are in Gp} CASE 2→ (4aα2 +12bα + ac)=0 {Whose one root is α} |
|
| 431. |
if `alpha,beta,gamma` are non-real numbers satisfying `x^3-1=0,` then the value of `|[lambda+1,alpha,beta],[alpha,lambda+beta,1],[beta,1,lambda+1]|` |
| Answer» Correct Answer - B | |
| 432. |
If the lines `a_1x+b_1y+1=0, a_2x+b_2y+1=0 a n d a_3x+b_3y+1=0`are concurrent, show that the points `(a_1, b_1), (a_2, b_2)a n d (a_3, b_3)`are collinear. |
|
Answer» The given lines are `a_ (1)x+b_(1)y+1=0` `a_(2)x+b_(2)y +1=0` ` a_(3) x+b_(3)y+1=0` if these lines are concurrent we must have3 `|underset(a_(3)" "b_(3)" "1)underset(a_(2)" "b_(2)" "1)(a_(1)" "b_(1)" "1)|=0` Which is the condition of colinearity of three points `(a_(1) b_(1)), (a_(2),b_(2)), " and " (a_(3),b_(3))` Hence if the given lies are concurrent the given points are collinear. |
|
| 433. |
Let D = \(\begin{vmatrix}sinθ. cosϕ&sinθ. sinϕ&cosθ\\cosθ.cosϕ&cosθ.sinθ& -sinθ\\-sinθ.sinϕ&sinθ.cosϕ&0\end{vmatrix}\)thenD=[(sin θ ⋅ cos ϕ, sin θ ⋅ sin ϕ, cos θ) (cos θ ⋅ cos ϕ, cos θ ⋅ sin ϕ, −sin θ) (−sin θ ⋅ sin ϕ, sin θ ⋅ cos ϕ, 0)](a) D is independent of θ (b) D is independent of φ (c) D is a constant(d) dD/d at θ = π/2 is equal to 0 |
|
Answer» Correct option is (b) D is independent of φ |
|
| 434. |
Evaluate: `(i) |{:(6, -3), (7, -2):}| " " (ii) |{:(x^(2)-x +1, x-1),(x+1, x+1):}|` |
|
Answer» `(i) |{:(6, -3), (7, -2):}| = (-2)-7(-3) = -12 + 21 =9`. `(ii) |{:(x^(2)-x+1, x-1), (x+1, x+1):}| = (x^(2) -x +1)(x+1)-(x+1)(x-1)` `= (x^(3)+1)-(x^(2)-1) = (x^(3) -x^(2) +2)`. |
|
| 435. |
Prove that`|[b+c,a,b],[c+a,c,a],[a+b,b,c]|=(a+b+c)(a-c)^2`A. `(a+b+c)(a-c)`B. `(a+b+c)(b-c)`C. `(a+b+c)(a-c)^(2)`D. `(a+b+c)(b-c)^(2)` |
|
Answer» Correct Answer - C `Delta = |[b, a, b], [c, c, a], [a, b, c]| + |[c, a, b], [a, c, a], [b, b, c]|` Apply `R_(1) to R_(1) + R_(2) + R_(3)` in each and simplify |
|
| 436. |
`|[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|=?`A. `a^(3)`B. `-a^(3)`C. 0D. none of these |
|
Answer» Correct Answer - B Apply `R_(2) to R_(2) - 3R_(1) "and"R_(3) to R_(3)-6R_(1)` |
|
| 437. |
`|[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|=?` |
| Answer» Apply `R_(2) to R_(2) -3R_(1) " and "R_(3) to R_(3) - 6R_(1)` | |
| 438. |
Using the property of determinants and without expanding, prove that:`|1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0` |
|
Answer» `L.H.S.=|{:(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b)):}|=|{:(1,bc,ab+ca+bc),(1,ca,ba+ab+ca),(1,ab,ca+be+ab):}|` `(C_(3)toC_(3)+C_(2))` `=(ab+bc+ca)|{:(1,bc,1),(1,ca,1),(1,ab,1):}|` `=(ab+bc+ca)xx0" "(because C_(1)" and "C_(3)" are same)` = 0 = R.H.S |
|
| 439. |
If `f(x)`is a polynomial of degree ` |
|
Answer» we have to prove that `|{:(1,,a,,(f(a))/((x-a))),( 1,,b,,(f(b))/((x-b))),(1,,c,,(f(c))/((x-c))):}| -: |{:(1,,a,,a^(2)),( 1,,b,,b^(2)),(1,,c,,c^(2)):}| =(f(x))/((x-a)(x-b)(x-c))` `L.H.S.=|{:(1,,a,,(f(a))/((x-a))),( 1,,b,,(f(b))/((x-b))),(1,,c,,(f(c))/((x-c))):}| -: [(a-b)(b-c)(c-a)]` Expanding along `C_(3)` we get `L.H.S. =(1)/((a-b)(b-c)(c-a))xx` `[(f(a)(c-b))/((x-a))+(f(b)(a-c))/((x-b))+(f(c)(b-a))/((x-c))]` Now using partial fraction method on R.H.S. we get `R.H.S. (f(x))/((x-a)(x-b)(x-c))=(A)/(x-a)+(B)/(x-b)+(C)/(x-c)` ltbr. `"(As degree of " f(x) lt 3)` `" then " A= [(f(x))/((x-b)(x-c))]_(x=a)` `=(f(a))/((b-a)(a-c))` `" Similarly "=(1)/((b-a)(b-c)) " and " C = (f(c))/((c-a)(c-b))` `:. R.H.S. =(1)/((a-b)(b-c)(c-a))xx` `[((c-b)f(a))/((x-b))+((a-c)f(b))/((x-b))+((b-a)f(c))/((x-c))]` Hence L.H.S. =R.H.S.` |
|
| 440. |
By using properties of determinants. Show that:(i) `|1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a)`(ii) `|1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)` |
|
Answer» `|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(0,a-c,a^(2)-c^(2)),(0,b-c,b^(2)-c^(2)),(1,c,c^(2)):}|" "({:(R_(1)toR_(1)-R_(3)),(R_(2)toR_(2)-R_(3)):})` `=(a-c)(b-c)|{:(0,a-c,a^(2)-c^(2)),(0,b-c,b^(2)-c^(2)),(1,c,c^(2)):}|` `=(a-c)(b-c)|{:(0,a-c,a^(2)-c^(2)),(0,b-c,b^(2)-c^(2)),(1,c,c^(2)):}|` (Expending along `C_(1)`) ` =-(c-a)(b-c)(b+c-a-c) ` `=-(b-c)(c-a)(b-a)` `=(a-b)(b-c)(c-a)=R.H.S.` (ii) `|{:(1,1,1),(a,b,c),(a^(3),b^(3),c^(3)):}|=|{:(0,0,1),(a-b,b-c,c),(a^(3)-b^(3),b^(3)-c^(3),c^(3)):}|" "({:(C_(1)toC_(1)-C_(2)),(C_(2)toC_(2)-C_(3)):})` `=(a-b)(b-c)|{:(0,0,1),(1,1,c),(a^(2)+b^(2)+ab,b^(2)+c^(2)+cb,c^(3)):}|` `=(a-b)(b-c).1|{:(1,1),(a^(2)+b^(2)+ab,b^(2)+c^(2)+bc):}|" "("Expenbding along "{R_(1))` `=(a-b)(b-c)(b^(2)+c^(2)+bc-a^(2)-b^(2)-ab)` `=(a-b)(b-c)[c^(2)-a^(2)+bc-ab]` `=(a-b)(b-c)(b-c)[(c-a)(c+a)+b(c-a)]` `=(a-b)(b-c)(c-a)(c+a+b)` `=(a-b)(b-c)(c-a)(a+b+c)` =R.H.S |
|
| 441. |
Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}a & b & c \\[0.3em]a+2x& b+2y & c+2z \\[0.3em]x & y &z\end{vmatrix}\) |
|
Answer» Let Δ = \(\begin{vmatrix}a & b & c \\[0.3em]a+2x& b+2y & c+2z \\[0.3em]x & y &z\end{vmatrix}\) Applying, C2→C2 + C1 and C3→C3 + C1 ⇒ Δ = \(\begin{vmatrix}a & b & c \\[0.3em]2a+2x& 2b+2y & 2c+2z \\[0.3em]a+x & b+y &c+z\end{vmatrix}\) Taking 2 common from R2 we get, ⇒ Δ = 2\(\begin{vmatrix}a & b & c \\[0.3em]a+x& b+y & c+z \\[0.3em]a+x & b+y &c+z\end{vmatrix}\) As, R2 = R3, hence value of determinant is zero. |
|
| 442. |
Using properties ofdeterminants, solve the following for x:`|x-2 2x-3 3x-4x-4 2x-9 3x-16 x-8 2x-27 3x-64|=0` |
|
Answer» Let the given determinant be `Delta`. Then, `Delta = |[x-2,2x-3, 3x-4],[x-4, 2x-9, 3x-16],[x-8,2x-27 ,3x-64]|` `= |[x-2,1, 2],[x-4, -1, -4],[x-8,-11 ,-40]| [C_(1) to (C_(2) -2C_(1)), C_(3) to (C_(3) - 3C_(1))]` `= |[x-2,1, 2],[-2, -2, -6],[-6,-12 ,-42]| [R_(2) to (R_(2) -R_(1)), R_(3) to (R_(3) - R_(1))]` `=(-2) * (-6)* |[x-2,1, 2],[1, 1, 3],[1, 2, 7]|` `=12* |[x-3,1, 2],[0, 1, 3],[-1, 2, 7]| [C_(1) to (C_(1)-C_(2))]` `=12 * [(x-3) (7-6) -1 * (3-2)]` `=12 * (x-4)` `therefore Delta = 0 hArr 12(x-4) = 0 hArr x = 4` Hence, solution set = {4} |
|
| 443. |
Using properties ofdeterminants, solve the following for `x:``|(x-2, 2x-3, 3x-4),(x-4, 2x-9, 3x-16),( x-8, 2x-27, 3x-64)|=0`A. {4}B. {2, 4}C. {2, 8}D. {4, 8} |
|
Answer» Correct Answer - A Apply `C_(2) to (C_(2) - 2C_(1)) "and" C_(3) to (C_(3)-3C_(1))` Now, apply `R_(2) to (R_(2)-R_(1)) "and" R_(3) to (R_(3)-R_(1))` |
|
| 444. |
Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]16 &4 & 3\end{vmatrix}\) |
|
Answer» Let Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]16 &4 & 3\end{vmatrix}\) Applying R3 → R3 – R2, we get ⇒ Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]4 &1 & -2\end{vmatrix}\) Applying R2 → R2 – R1, we get ⇒ Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]4 & 1 & -2 \\[0.3em]4 &1 & -2\end{vmatrix}\) As, R2 = R3, Therefore the value of the determinant is zero. |
|
| 445. |
Show that the points (1, 0), (6, 0), (0, 0) are collinear. |
|
Answer» Since \(\begin{vmatrix} 1&0 & 1 \\[0.3em] 6& 0 & 1 \\[0.3em] 0 &0&1 \end{vmatrix}=0\) Hence (1,0),(6,0) and (0,0) are collinear. |
|
| 446. |
Write the minor and cofactor of each element of the following determinants and also evaluate the determinant in each case: ` |[1,3,-2],[4,-5,6],[3,5,2]| ` |
|
Answer» The minors of the elements of `Delta` are given by `M_(11) = |{:(-1, 2), (5, 2):}| =-12, M_(12) = |{:(4, 2), (3, 2):}| = 2, M_(13) = |{:(4, -1), (3, 5):}| =23,` `M_(21) = |{:(-3, 2), (5, 2):}| =-16, M_(22) = |{:(1, 2), (3, 2):}| = -4, M_(23) = |{:(1, -3), (3, 5):}| =14,` `M_(31) = |{:(-3, 2), (-1, 2):}| =-4, M_(32) = |{:(1, 2), (4, 2):}| = -6, M_(33) = |{:(1, -3), (4, -1):}| =11` So, the cofactors of the corresponding elements of `Delta` are `C_(11) = (-1)^(1+1) * M_(11) = M_(11) = -12, C_(12) = (-1)^(1+2) * M_(12) = -M_(12) = -2,` `C_(13) = (-1)^(1+3) * M_(13) = M_(13) = 23, C_(21) = (-1)^(2+1) * M_(21) = -M_(21) = 16,` `C_(22) = (-1)^(2+2) * M_(22) = M_(22) = -4, C_(23) = (-1)^(2+3) * M_(23) = -M_(23) = -14,` `C_(31) = (-1)^(3+1) * M_(31) = M_(31) = -4, C_(32) = (-1)^(3+2) * M_(32) = -M_(32) = 6,` `C_(33) = (-1)^(3+3) * M_(33) = M_(33) = 11`. |
|
| 447. |
Evaluate : \(\begin{vmatrix}cos\,15° & \ sin\,15° \\[0.3em]sin\,75° & cos\,75° \\[0.3em]\end{vmatrix}\) |
|
Answer» Expanding the determinant, we get cos 15°. cos 75° – sin 15°. sin 75° = cos (15° + 75°) = cos 90° = 0 [Note: cos (A + B) = cos A. cos B – sin A. sin B] |
|
| 448. |
Find the minor of the element of second row and third column (a23) in the following determinant :\(\begin{vmatrix}2 & -3 & 5 \\[0.3em]6 & 0 & 4 \\[0.3em]1 &5 &-7\end{vmatrix}\) |
|
Answer» We have, \(\begin{vmatrix} 2 & -3 & 5 \\[0.3em] 6 & 0 & 4 \\[0.3em] 1 &5 &-7 \end{vmatrix}\) Minor of an element a23 = M23 = \(\begin{vmatrix} 2 & -3 \\[0.3em] 1 & 5 \\[0.3em] \end{vmatrix}\) = 10 + 3 = 13 |
|
| 449. |
The vertices of `/_ ` ABC are A(-2, 4), B (2, -6) and C(5, 4). The area of `/_ ` ABC isA. 17.5 sq unitsB. 35 sq unitsC. 32 sq unitsD. 28 sq units |
|
Answer» Correct Answer - B `Delta = (1)/(2)|[-2, 4, 1], [2, -6, 1], [5, 4, 1]| = (1)/(2)|[-2, 4, 1], [4, -10, 0], [7, 0, 0]| = 35` sq. units |
|
| 450. |
Show that if `x_(1),x_(2),x_(3) ne 0` `|{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|` `=x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))` |
|
Answer» The given determinant can be written as the sum of two determinants `|{:(x_(1),,a_(1)b_(2),,a_(1)b_(3)),(0,,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(0,,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|+|{:(a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|` Expanding the first determinant along `C_(1)` we get `x_(1) |{:(x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|` `=x_(1)[(x_(2)+a_(2)b_(2))(x_(3)+a_(3)b_(3))-a_(3)b_(2)a_(2)b_(3)]` `=x_(1)(x_(2)x_(3)+x_(3)a_(2)b_(2)+x_(2)a_(3)b_(3)+a_(2)b_(2)a_(3)b_(3)-a_(3)b_(2)b_(3)]` `=x_(1)x_(2)x_(3)+x_(1)x_(3)a_(2)b_(2)+x_(1)x_(2)a_(3)b_(3)` In the second determinant taking `b_(1)` common from `C_(1)` and then applying `C_(1) to C_(2) -b_(2)C_(1)" and " C_(3) to -b_(3)dC_(3)` we obtain `b_(1) |{:(a_(1),,0,,0),(a_(2),,x_(2),,0),(a_(3),,0,,x_(3)):}|=a_(2)b_(1)x_(2)x_(3)` Therefore the given determinant is `x_(1)x_(2)x_(3)+x_(1)x_(3)a_(2)b_(2)+x_(1)x_(2)a_(3)b_(3)+a_(1)b_(1)x_(2)x_(3)` `=x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1)) +(a_(2)b_(2))/(x_(2)) +(a_(3)b_(3))/(x_(3)))` |
|