

InterviewSolution
Saved Bookmarks
1. |
Using the property of determinants and without expanding, prove that:`|1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0` |
Answer» `L.H.S.=|{:(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b)):}|=|{:(1,bc,ab+ca+bc),(1,ca,ba+ab+ca),(1,ab,ca+be+ab):}|` `(C_(3)toC_(3)+C_(2))` `=(ab+bc+ca)|{:(1,bc,1),(1,ca,1),(1,ab,1):}|` `=(ab+bc+ca)xx0" "(because C_(1)" and "C_(3)" are same)` = 0 = R.H.S |
|