1.

Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}a & b & c \\[0.3em]a+2x& b+2y & c+2z \\[0.3em]x & y &z\end{vmatrix}\)

Answer»

Let Δ = \(\begin{vmatrix}a & b & c \\[0.3em]a+2x& b+2y & c+2z \\[0.3em]x & y &z\end{vmatrix}\)

Applying, C2→C2 + C1 and C3→C3 + C1

⇒  Δ = \(\begin{vmatrix}a & b & c \\[0.3em]2a+2x& 2b+2y & 2c+2z \\[0.3em]a+x & b+y &c+z\end{vmatrix}\)

Taking 2 common from R2 we get,

 ⇒  Δ = 2\(\begin{vmatrix}a & b & c \\[0.3em]a+x& b+y & c+z \\[0.3em]a+x & b+y &c+z\end{vmatrix}\)

As, 

R2 = R3, hence value of determinant is zero.



Discussion

No Comment Found