1.

Let `omega`be a complex number such that `2omega+1=z`where `z=sqrt(-3.)``If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k ,`then`k`is equal to :`-1`(2) `1`(3) `-z`(4) `z`A. 1B. `-z`C. zD. -1

Answer» Correct Answer - 2
Here `omega ` is complex cube root of unity
Applying `R_(1) to R_(1)+R_(2)+R_(3),` the given matrix reduces to
` |{:(3,,0,,0),(1,,-omega^(2)-1,,omega^(2)),(1,,omega^(2),,omega):}|= 3(-1-omega -omega) = -3z`
`rArr k=-z`


Discussion

No Comment Found