Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

Choose the correct answer from the following : The value of `|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|is:`A. `(a -b) (b -c) (c -a)`B. `(a^(2) -b^(2)) (b^(2) -c^(2)) (c^(2) -a^(2))`C. `(a -b+ c) (b -c +a) (c -a +b)`D. none of these

Answer» Correct Answer - A
We have,
`Delta = |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|`
`rArr Delta = |(1,a,a^(2)),(0,b -a,b^(2) -a^(2)),(0,c -a,c^(2) -a^(2))|` Applying `R_(2) rarr R_(2) - R_(1) and R_(3) rarr R_(3) - R_(1)`
`rArr Delta = (b -a) (c -a) |(1,a,a^(2)),(0,1,b +a),(0,1,c +a)|` Taking `(b -c) and (c -a)` common from `R_(2) and R_(3)` respectively
`rArr Delta = -(b -a) (c -a) (c-b) = (a -b) (b -c) (c -a)`
452.

If `a^(-1)+b^(-1)+c^(-1)=0` such that `|{:(1+a," "1," "1),(" "1,1+b," "1),(" "1," "1,1+c):}|=lambda`, then what is `lambda` equal to ?

Answer» Correct Answer - B
453.

The value of `|(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))|`, isA. `a_(1) a_(2) a_(3) b_(1) b_(2) b_(3)`B. `x_(1) x_(2) x_(3) y_(1) y_(2) y_(3)`C. 0D. none of these

Answer» Correct Answer - C
We have,
`|(a_(1),b_(1),0),(a_(2),b_(2),0),(a_(3),b_(3),0)||(x_(1),y_(1),0),(x_(2),y_(2),0),(x_(3),y^(3),0)| = 0 xx 0 = 0`
`rArr |(a_(1) x_(1) + b_(1) y_(1) + 0,a_(1) x_(2) + b_(1) y_(2) + 0,a_(1) x_(3) + b_(1) y_(3) + 0),(a_(2) x_(1) + b_(2) y_(1) + 0,a_(2) x_(2) + b_(2) y_(2) + 0,a_(2) x_(3) + b_(2) y_(3) + 0),(a_(3) x_(1) + b_(3) y_(1) + 0,a_(3) x_(2) + b_(3) y_(2) + 0,a_(3) x_(3) + b_(3) y_(3) + 0)| = 0` [Using row by-row multiplication]
`rArr |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) + b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| = 0`
454.

`Delta = |(a =x,b,c),(b,x +c,a),(c,a,x +b)|`. Which of the following is a factor for the above determinant ?A. `x -(a + b +c)`B. `x + (a +b +c)`C. `a + b + c`D. `-(a +b +c)`

Answer» Correct Answer - B
We have,
`Delta = |(a +x,b,c),(b,x +c,a),(c,a,x + b)|`
`rArr Delta = |(x + a + b + c,b,c),(x +a + b + c,x +c,a),(x + a + b + c,a,x +b)|` Applying `C_(1) rarr C_(1) + C_(2) + C_(3)`
`rArr Delta = (x +a +b +c) |(1,b,c),(1,x +c,a),(1,a,x +b)|`
`rArr (x +a +b +c)` is a factor of `Delta`
455.

If `a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2)`, then the value of k isA. 2B. 1C. 4D. 3

Answer» Correct Answer - C
456.

What is `|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|` equal to ?A. `4a^(2) b^(2)`B. `4b^(2) c^(2)`C. `4c^(2) a^(2)`D. `4a^(2) b^(2) c^(2)`

Answer» Correct Answer - D
We have,
`Delta = |(a^(2),-ab,-ac),(-ab,b^(2),-bc),(ca,bc,-c^(2))|`
`rArr Delta = abc |(a,-b,-c),(-a,b,-c),(a,b,-c)|` Taking a, b, c common from `T_(1), R_(2) and R_(3)` respectively
`rArr Delta = a^(2) b^(2) c^(2) |(1,-1,-1),(-1,1,-1),(1,1,-1)|` Taking a,b, c common from `C_(1), C_(2) and C_(3)` respectively
`rArr Delta = a^(2) b^(2) c^(2) |(1,0,0),(-1,0,-2),(1,2,0)|` Applying `C_(2) rarr C_(2) + C_(1), C_(3) rarr C_(3) + C_(1)
`rArr Delta = 4a^(2) b^(2) c^(2)`
457.

The value of the determinant `|(b +c,a -b,a),(c +a,b -c,b),(a +b,c -a,c)|`, isA. `a^(3) + b^(3) + c^(3) - 3abc`B. `3abc - a^(3) -b^(3) - c^(3)`C. `3 abc + a^(3) + b^(3) + c^(3)`D. none of these

Answer» Correct Answer - B
We have,
`|(b +c,a -b,a),(c +a,b -c,b),(a +b,c -a,c)|`
`= |(a +b +c,-b,a),(b +c +a,-c,b),(c +a +b,-a,c)| " " ["Applying " C_(1) rarr C_(1) + C_(3), C_(2) rarr -C_(2) - C_(3)]`
`= - (a +b +c) |(1,b,a),(1,c,a),(1,a,c)|`
`= -(a +b +c) |(1,b,a),(0,c -b,b -a),(0,a -b,c -a)| [(" Applying"),(R_(2) rarr R_(2) - R_(1) ", "R_(3) rarr R_(3) - R_(1))]`
`= - (a + b +c) (a^(2) + b^(2) + c^(2)- ab - bc -ca)`
`= - (a^(3) + b^(3) + c^(3) - 3abc)`
458.

`[[a,b,ax+by],[b,c,bx+cy],[ax+by,bx+cy,0]]=(b^2-ac)(ax^2+2bxy+cy^2)`A. zeroB. positiveC. negativeD. `b^(2) + ac`

Answer» Correct Answer - C
We have,
`Delta = |(a,b,ax + by),(b,c,bx + cy),(ax + by,bx + cy,0)|`
`rArr Delta = |(a,b,ax + by),(b,c,bx + cy),(0,0,-(ax^(2) + 2bxy + cy^(2)))| " " [("Applying " R_(3) rarr),(R_(3) - xR_(1) - yR_(2))]`
`rArr Delta = (b^(2) - ac) (ax^(2) + 2bxy + cy^(2))`
Now, `b^(2) - ac lt 0 and a gt 0`
`rArr` Discriminant of `ax^(2) + 2bxy + cy^(2)` is negative and `a gt 0`
`rArr ax^(2) + 2bxy+ cy^(2) gt 0` for all x,`y in R`
`rArr Delta = (b^(2) -ac) (ax^(2) + 2bxy + cy^(2)) lt 0`
459.

If `x , y , z`are not all zero such that`a x+y+z=0`,`x+b y+z=0`,`x+y+c z=0`then prove that`1/(1-a)+1/(1-b)+1/(1-c)=1`

Answer» `D= | (a,1,1),(1,b,1),(1,1,c)| = 0`
`R_2 -> R_2 - R_1`
`R_3 -> R_3 - cR_1`
`D= |(a,1,1),((1-a),b-1,0,),(1-ac,1-c,0)|`
`=> (1-a)(1-c)- (b-1)(1-ac) = 0`
`= 1-a-c+ac- (b-1-abc+ac) = 0`
`= 1 - a-c+ac-b+1+abc-ac= 0`
`= 2-a-b-c+abc= 0 `
`abc = a+b+c - 2`
to prove :`1/(1-a) + 1/(1-b) + 1/(1-c) = 1`
LHS :`1/(1-a) + 1/(1-b) + 1/(1-c) = ((1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b))/((1-a)(1-b)(1-c))`
`= (3-2(a+b+c) + (ab+bc+ac))/(1- (a+b+c) + (ab + bc + ac) - ab)`
`= 1`
460.

If `f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|,`using properties of determinants, find the value of `f(2x)-f(x)dot`

Answer» Using the property`R_2rarrR_2-xR_1` and `R_3rarrR_3-xR_2`
we get=>`f(x)=|(a,-1,0),(0,a+x,-1),(0,0,a+x)|`
evaluating the determinant we get=>`f(x)=a(a+x)^2`
`f(2x)=a(a+2x)^2`
`f(2x)-f(x)=a((a+2x)^2-(a+x)^2)`
`f(2x)-f(x)=3ax^2+2a^2x`
461.

Using properties of determinant show that: `|[1 , a , -bc] , [1 , b , -ca] , [1 , c , -a b]|=(a-b)(b-c)(c-a)`

Answer» `|(1,a,-bc),(1,b,-ca),(1,c,-ab)| `
`R_1 -> R_1 - R_2`
`|(0,a-b,c(a-b)), (1,b,-ca),(1,c,-ab)|`
`R_2 -> R_2 - R_3`
`|(0,a-b, c(a-b)),(0,b-c, a(b-c)),(1,c,-ab)|`
`(a-b)(b-c)|(0,1,c),(0,1,a),(1,c,-ab)|`
`(a-b)(b-c)(a-c)`
Answer
462.

Show that :`|x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot`

Answer» `|(x,y,z),(x^2,y^2,z^2),(x^3 , y^3,z^3)|`
`= xyz|(1,1,1),(x,y,z),(x^2,y^2,z^2)|`
`c_2 -> c_2 - c_1`
`c_3 -> c_3 - c_1`
`=> |(1,0,0),(x, y-x, z-x),(x^2, y^2-x^2, z^2-x^2)|`
`= 1((y-x)(z^2-x^2) - (z-x)(y^2 - x^2))`
`= xyz(y-x)(z-x)(z+x-y-x)`
`= xyz(y-x)(z-x)(z-y)`= RHS
hence proved
463.

If `f(x)=|a-1 0a x a-1a x^2a x a|,t h e nf(2x)-f(x)`is divisible by`a`b. `b`c.`c ,d ,e`d. none of theseA. xB. aC. `2a+3x`D. `x^(2)`

Answer» Correct Answer - A::B::C
Applying `R_(3) to R_(3) -xR_(2) " and " R_(2) to R_(2)-xR_(1)` we get
`f(x)= |{:(a,,-1,,0),(0,,a+x,,-1),(0,,0,,a+x):}|=a(a+x)^(2)`
hence
`f(2x)- f(x) =a [(a+2x)^(2) -(a-x)^(2)]`
`=a(a+2x-a-x) (a+2x+a+x)`
`=ax (2a+3x)`
464.

In a `triangleABC`, if `|[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0`, then prove that `triangleABC` is an isosceles triangle.

Answer» `|(1,1,1),(1+sinA , 1+ sinB, 1+sinC),(sinA +sin^2 A , sin B + sin^2 B , sin C + sin^2 C)|= 0`
`R_1 -> R_2 - R_3`
`|(1,1,1),(sinA , sinB, sinC),(sinA +sin^2 A , sin B + sin^2 B , sin C + sin^2 C)|= 0`
`R_3 -> R_3 -R_2`
`|(1,1,1),(sinA , sinB, sinC),(sin^2 A ,sin^2 B , sin^2 C)|= 0`
`C_2 -> C_2 - C_1 & C_3 -> C_3 - C_1`
`|(1,0,0),(sinA , sinB- sinA, sinC- sinB),(sin^2 A ,(sinB-sinA)(sinB+ sinA) , (sinC-sinB)(sin C + sinB))|= 0`
`(sinB-sinA)(sinC-sinA)|(11,0,0),(sinA,1,1),(sin^2 A , sinB+ sinA, sinC+sinA)|= 0`
`(sin B - sinA)(sin C-sinA)[1(sinC + sinA - sinB - sinA)] = 0`
`sinB = sinA or sinC = sinA or sinC= sinB`
`/_B =/_A ; /_C=/_A ; /_C= /_B`
so, `AC=BC , AB=BC,AB=AC`
`:./_ ABC` is isosceles . hence proved
465.

`Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}|` is independent ofA. aB. bC. c,d,eD. none of these

Answer» Correct Answer - A::B::C
Operating `C_(2) to C_(2)-C_(1),C_(3) to C_(3)-C_(1)` we get
`Delta =|{:(1,,ac,,bc),(1,,ad,,bd),(1,,ae,,be):}|=ab|{:(1,,c,,c),(1,,d,,d),(1,,e,,e):}|= ab (0) =0`
466.

If `a, b, and c` are the sides of a triangle and `A, B and C` are the angles opposite to `a, b,and c,` respectively, then `Delta=|(a^2,b sinA,csin A),(b sinA,1,cosA),(c sinA,cos A,1)|`A. `sin A sin B sin C`B. abcC. 1D. 0

Answer» Correct Answer - D
467.

If A, B and C denote the angles of a triangle, then `Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)|` is independent ofA. `cos A cos B cos C`B. `sin A sin B sin C`C. 0D. none of these

Answer» Correct Answer - C
468.

One root of the equation `|{:(3-x,-6,3),(-6,3-x,3),(3,3,-6-x):}|=0" "is:`A. 6B. 3C. 0D. None of these

Answer» Correct Answer - C
469.

if `Delta (x) = |{:(tan x,,tan (x+h),,tan(x+2h)),(tan(x+2h),,tan x,,tan(x+h)),(tan(x+h),,tan(x+2h),,tanx):}|, " then "` The value of `lim_(h to 0) .(Delta (pi//3))/(sqrt(3)h^(2)) " is "`A. 144B. 81C. 64D. 36

Answer» Correct Answer - A
`(Delta)/(h^(2)) = |{:(tan x,,(tan (x+h)-tanx)/(h),,(tan (x+2h)-tanx)/(h)),(tan(x+2h),,(tan x-tan(x+2h))/(h),,(tan(x+h)-tan(x+2h))/(h)),(tan(x+h),,(tan(x+2h)-tan(x+h))/(h),,(tanx-tan (x+h))/(h)):}|`
`rArr underset( h to 0)("lim") .(Delta)/(h^(2)) =|{:(tan x,,sec^(2) x,,2sec^(2) x),(tan x,,-2sec^(2) x,,-sec^(2) x),(tan x,,sec^(2)x,,-sec^(2) x):}|`
`= |{:(0,,0,,3sec^(2)x),(0,,-3sec^(2)x,,0),(tan x,,sec^(2)x,,-sec^(2)x):}|`
`= tan x sec^(4) x`
`rArr underset( h to 0)(" lim ") .(Delta (pi//3))/(sqrt(3)h^(2)) =144`
470.

If A, B and C are the angles of a triangle and `|(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0`, then the triangle ABC isA. equilateralB. isoscelesC. any triangleD. right angled

Answer» Correct Answer - B
471.

`|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),(-10,12,2)|=0`

Answer» Correct Answer - A
472.

If `f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " lim_(x rarr 0) (f (x))/(x^(2))`, isA. 3B. `-1`C. 0D. 1

Answer» Correct Answer - D
473.

If `0lt0ltpi/2" and "|{:(1+sin^(2)theta,cos^(2)theta,4sin4theta),(sin^(2)theta,1+cos^(2)theta,4sintheta),(sin^(2)theta,cos^(2)theta,1+4sintheta):}|=,"then "theta=`A. `pi/24,(5pi)/(24)`B. `(5pi)/24,(7pi)/24`C. `(7pi)/24,(11pi)/(24)`D. None of these

Answer» Correct Answer - C
474.

The roots of the equation `|(1,4,20),(1,-2,5),(1,2x,5x^(2))| = 0` areA. `-1, -2`B. `-1, 2`C. `1, -2`D. `1, 2`

Answer» Correct Answer - B
475.

The roots of the equation `|(3x^(2),x^(2) + x cos theta + cos^(2) theta ,x^(2) + x sin theta + sin^(2) theta),(x^(2) + x cos theta + cos^(2) theta,3 cos^(2) theta,1 + (sin 2 theta)/(2)),(x^(2) + x sin theta + sin^(2) theta,1 + (sin 2 theta)/(2),3 sin^(2) theta)| = 0`A. `sin theta, cos theta`B. `sin^(2) theta, cos^(2) theta`C. `sin theta, cos^(2) theta`D. `sin^(2) theta, cos theta`

Answer» Correct Answer - A
476.

The roots of the equation `|(x -1,1,1),(1,x -1,1),(1,1,x -1)| =0`, areA. 1, 2B. `-1, 2`C. `1, -2`D. `-1, -2`

Answer» Correct Answer - B
477.

From the matrix equation AB = AC we can conclude B = C provided thatA. A is singularB. A is non-singularC. A is symmetricD. A is square

Answer» Correct Answer - B
478.

For any `triangleABC`, the value of determinant `|[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]|` is:

Answer» `Delta = |[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]|`
`=>Delta = [sin^2A(cotB-cotC) -sin^2B(cotA - cotC)+ sin^2C( cotA - cotB)]`
Converting, `cot` into `cos/sin` form, we get,
`=>Delta = [sin^2A(sin(C-B)/(sinB*SinC)) +sin^2B(sin(A-C)/(sinC*SinA))+ sin^2C( sin(B-A)/(sinB*SinA))]`
`=>Delta = [(sin^3A(sin(C-B))+sin^3B(sin(A-C))+ sin^3C( sin(B-A)))/(sinAsinBsinC)]`
Now, `sin^3A = sinAsin^2A = sin(pi-(B+C))sin^2A = sin(B+C)sin^2A)`
`sin^3B = sinBsin^2B = sin(pi-(A+C))sin^2B = sin(A+C)sin^2B)`
`sin^3C = sinCsin^2C = sin(pi-(B+A))sin^2C = sin(B+A)sin^2C)`
So, our equation becomes,
`Delta = [ (sin^2A((sinCcosB)^2-(cosCsinB)^2)+sin^2B((sinAcosC)^2-(cosAsinC)^2)+ sin^2C( (sinBcosA)^2-(cosBsinA)^2))/(sinAsinBsinC)]`
`Delta = [0/(sinAsinBsinC)] =0`
479.

if `a_(r) = (cos 2r pi + I sin 2 r pi)^(1//9)` then prove that `|{:(a_(1),,a_(2),,a_(3)),(a^(4) ,,a^(5),,a_(6)),( a_(7),, a_(8),,a_(9)):}|=0`

Answer» `a_(r )=(cos 2r pi + I sin 2 rpi )^(1/9) =e^(i(2rpi)/(9))`
`:. Delta = |{:(a_(1),,a_(2),,a_(3)),(a_(4),,a_(5),,c_(6)),(a_(7),,a_(8),,a_(9)):}|=|{:(e^(i(2pi)/(9)),,e^(i(4pi)/(9)),,e^(i(6pi)/(9))),(e^(i(8pi)/(9)),,e^(i(10pi)/(9)),,e^(i(18pi)/(9))),(e^(i(14pi)/(9)),,e^(i(16pi)/(9)),,e^(i(18pi)/(9))):}|`
Now taking `e^(i(6pi)/(9))` common from `R_(2)` we get
`Delta =e^(i(6pi)/(9)) |{:(e^(i(2pi)/(9)),,e^(i(4pi)/(9)),,e^(i(6pi)/(9))),(e^(i(2pi)/(9)),,e^(i(4pi)/(9)),,e^(i(6pi)/(9))),(e^(i(14pi)/(9)),,e^(i(16pi)/(9)),,e^(i(18pi)/(9))):}|`
`(As R_(1) " and " R_(2) " are identical ")`
480.

Given `A=|a b2c d e2fl m2n|,B=|f2d e2n4l2m c2a b|`, then the value of `B//A`is ___________.

Answer» Correct Answer - 5
`B =2xx2 |{:(f,,d,,e),(n,,l,,m),(c,,a,,b):}|`
`=2 |{:(2f,,d,,e),(2n,,l,,m),(2c,,a,,b):}|`
`=2|{:(2f,,a,,b),(2n,,d,,e),(2c,,l,,m):}|" "[R_(3) hArr R_(2) " and then "R_(2) hArr R_(2)]`
`=2 |{:(a,,b,,2c),(d,,e,,2f),(l,,m,,2n):}|" "[C_(1) hArr C_(2) " and then " C_(2) hArr C_(3)]`
`=2A`
`:. B//A =2`
481.

If `|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c)` where a, b, c are all different, then the determinant `|(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))|` vanishes whenA. `a + b + c = 0`B. `x = (1)/(3) (a + b +c)`C. `x = (1)/(2) (a + b +c)`D. `x = a + b + c`

Answer» Correct Answer - B
482.

Show that `a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0`are perpendicular to `x-y ,y-za n dz-x`planes, respectively.A. `-1`B. 0C. 1D. 2

Answer» Correct Answer - A
483.

The determinant `Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha + c,c alpha + d,a a^(3) - c alpha)|` is equal to zero, ifA. b, c, d are in A.PB. b, c, d are in G.PC. b, c, d are in H.PD. `alpha` is a root of `ax^(3) - cx - d = 0`

Answer» Correct Answer - B
484.

The value of the determinant `Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))|`, is

Answer» Correct Answer - D
485.

Find the number of real root of the equation`|0x-a x-b x+a0x-c x+b x+c0|=0,a!=b!=ca n db(a+c)> a c`

Answer» Correct Answer - three
Expanding Using Sarrus Rule
`Delta =(x-a)(x+b)(x-c)+(x-b)(x+a)(x+c)`
`=2x(x^(2)+ac-ab-bc)`
Now `Delta=0` gives x=0
or `x^(2) =b(a+c)-ac`
if b(a+c) `gt ac` we have three roots `0+- sqrt({b(a+c)-ac})`
486.

If `C = 2 cos theta`, then the value of the determinant `Delta = |(C,1,0),(1,C,1),(6,1,c)|`, isA. `(sin 4 theta)/(sin theta)`B. `(2 sin^(2) 2 theta)/(sin theta)`C. `4 cos^(2) theta (2 cos theta -1)`D. none of these

Answer» Correct Answer - D
We have,
`Delta = |(C,1,0),(1,C,1),(6,1,c)|`
`rArr Delta = |(0,1,0),(1 -C^(2),C,1),(6-C,1,C)| " " ["Applying " C_(1) rarr C_(1) - C C_(2)]`
`rArr Delta = -|(1 -C^(2),1,),(6 -C,C,)|` [Expanding along `R_(1)`]
`rArr Delta = - (C -C^(3) - 6 + C)`
`rArr Delta = C^(3) - 2C + 6`
`rArr Delta = 8 cos^(3) theta - 4 cos theta + 6`
Hence, option (d) is correct
487.

If `a gt 0` and discriminant of `ax^(2) + 2bx + c` is negative, then `Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)|`, isA. positiveB. `(ac -b^(2)) (ax^(2) + 2bx +c)`C. negativeD. 0

Answer» Correct Answer - C
It is given that the discriminant of `ax^(2) + 2bx + c` is negative.
`:. 4b^(2) - 4ac lt 0 rArr b^(2) - ac lt 0 rArr ac -b^(2) gt 0`
Also, `a gt 0` and discriminant is negative.
`:. Ax^(2) + 2bx + c gt 0` for all `x in R`
Now,
`Delta = |(a,b,ax + b),(b,c,bx + c),(ax +b,bx+c,0)|`
`rArr Delta = |(a,b,0),(b,c,0),(ax +b,bx +c,- x (ax +b) - (bx +c))|`
`rArr Delta = |(a,b,0),(b,c,0),(ax +b,bx +c,-(ax^(2) + 2bx +c))|`
`rArr Delta = -(ax^(2) + 2bx + c) (ac -b^(2)) lt 0` [Using (i) and (ii)]
488.

The equation `|(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0` (a,b,c are different) is satisfied by (A) `x=(a+b+c0` (B) `x= 1/3 (a+b+c)` (C) `x=0` (D) none of theseA. `x = 0`B. `x = a`C. `x = (1)/(3) (a + b +c)`D. `x = a + b + c`

Answer» Correct Answer - C
489.

Evaluate :\(\begin{bmatrix} 1^2& 2^2 & 3^2 \\[0.3em] 2^2 & 2^2 & 4^2 \\[0.3em] 3^2 &4^2 & 5^2 \end{bmatrix}\)[(1^2,2^2,3^2)(2^2,2^2,4^2)(3^2,4^2,5^2)]

Answer»

\(\begin{bmatrix}1^2& 2^2 & 3^2 \\[0.3em]2^2 & 2^2 & 4^2 \\[0.3em]3^2 &4^2 & 5^2\end{bmatrix}\) = \(\begin{bmatrix}1 &4 & 9 \\[0.3em]4 & 9 & 16 \\[0.3em]9 & 16 & 25\end{bmatrix}\)

Expanding by first row, we get, 

1(9 × 25 - 16 × 16) + 4(16 × 9 - 4 × 25) + 9(4 × 16 - 9 × 9) = - 31 + 176 - 153 =- 8

490.

If `a >0`and discriminant of `a x^2+2b x+c`is negative, then `=a b a x+bb c b x+c a x+bb x+c0`is`+v e`b. `(a c-b)^2(a x^2+2b x+c)`c. `-v e`d. `0`A. `+ve`B. `(ac-b)^(2))(ax^(2)+2bx+c)`C. `-ve`D. `0`

Answer» Correct Answer - C
here `a gt 0 " and " 4b^(2) -4ac lt 0 , i.e., ac -b^(2) gt 0`
`:. .ax^(2) +2bx +c gt 0 ,AA x in R `
Now
`Delta = |{:(a,,b,,ax+b),(b,,c,,bx+c),(0,,0,,-(ax^(2)+2bx+c)):}|`
`"[Operating " R_(3) to R_(3) -xR_(1)-R_(2)"]"`
`=-(ax^(2)+2bx+c)(ac-b^(2))`
` =- (+ve) (+ve) =-ve`
491.

The determinant `|(cos C,tan A,0),(sin B,0,-tan A),(0,sin B,cos C)|` has the value, where A, B, C are angled of a triangle

Answer» Correct Answer - A
492.

The value of `|(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|`, isA. 1B. `-1`C. 0D. `-abc`

Answer» Correct Answer - C
493.

Evaluate :\(\begin{bmatrix} 102& 18 & 36 \\[0.3em] 1 & 3 & 4 \\[0.3em] 17 & 3 & 6 \end{bmatrix}\) [(102,18,36)(1,3,4)(17,3,6)]

Answer»

\(\begin{bmatrix} 102& 18 & 36 \\[0.3em] 1 & 3 & 4 \\[0.3em] 17 & 3 & 6 \end{bmatrix}\) = 6 x \(\begin{bmatrix} 17& 18 & 6 \\[0.3em] 1 & 6 & 4 \\[0.3em] 17 & 3 & 6 \end{bmatrix}\)[R1’ = R1/6]

Now, for any determinant, if at least two rows are identical, then the value of the determinant becomes zero. 

Here, the first and third rows are identical. 

So, the value of the above determinant evaluated = 0

494.

Evaluate:\(\begin{bmatrix} 1^2&2^2 & 3^2 \\[0.3em] 2^2 & 2^2 & 4^2 \\[0.3em] 3^2 & 4^2 & 5^2 \end{bmatrix}\) |(1^2,2^2,3^2)(2^2,2^2,4^2)(3^2,4^2,5^2)|

Answer»

\(\begin{bmatrix} 1^2&2^2 & 3^2 \\[0.3em] 2^2 & 2^2 & 4^2 \\[0.3em] 3^2 & 4^2 & 5^2 \end{bmatrix}\) = \(\begin{vmatrix}1 & 4& 9 \\[0.3em]4 & 9 & 16 \\[0.3em]9 & 16& 25\end{vmatrix}\)

Expanding by first row, we get, 

1(9 × 25 - 16 × 16) + 4(16 × 9 - 4 × 25) + 9(4 × 16 - 9 × 9) 

= - 31 + 176 - 153 

=- 8

495.

Evaluate the determinants in(i) `|(costheta,-sintheta),(sintheta,costheta)|` (ii) `|(x^2-x+1,x-1),(x+1,x+1)|`

Answer» (i) `|[costheta,-sintheta],[sintheta,costheta]|`
`=[cos^2theta - (-sin^2theta)]`
`=[cos^2theta + sin^2theta)]`
`=1`
`:. |[costheta,-sintheta],[sintheta,costheta]| = 1`
(ii) `|[x^2-x+1,x-1],[x+1,x+1]|`
`=[(x+1)(x^2-x+1)-(x+1)(x-1)]`
`=[(x+1)(x^2-x+1-x+1)]`
`=[(x+1)(x^2-2x+2)]`
`=x^3-2x^2+2x+x^2-2x+2`
`=x^3-x^2+2`
`:.|[x^2-x+1,x-1],[x+1,x+1]| =x^3-x^2+2`
`
496.

Choose the correct answer from the following : `|{:(x,2),(8,x):}|=|{:(6,8),(9,12):}|,"then x:"`A. `+-6`B. `+-4`C. `+-2`D. None of these

Answer» Correct Answer - B
497.

The number of distinct real roots of `|(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0` in the interval `-(pi)/4 le x le t (pi)/4` is

Answer» Correct Answer - C
We have, `|(sin x,cos x,cos x),(cos x,sin x,cos x),(cos x,cos x,sin x)| = 0`
`rArr |(sin x + 2 cos x,sin x + 2 cos x,sin x + 2 cos x),(cos x,sin x,cos x),(cos x,cos x,sin x)| =0 " " ["Applying " R_(1) rarr R_(1) + R_(2) + R_(3)]`
`rArr (sinx + 2 cos x) |(1,1,1),(cos x,sin x,cos x),(cos x,cos x,sin x)| = 0`
`rArr (sinx + 2 cos x) |(1,0,0),(cos x,sin x - cos x,0),(cos x,0,sin x - cos x)| = 0 " " ["Applying " C_(3) rarr C_(3) - C_(1)"," C_(2) rarr C_(2) - C_(1)]`
`rArr (sin x + 2 cos x) (sin x - cos x)^(2) = 0`
`rArr tan x = -2 or, tan x = 1`
`rArr x = (pi)/(4) " " [ :. x in [pi//4, pi//4] rArr -1 le tan x le 1]`
498.

If a, b and c are real numbers, and `Delta=|b+cc+a a+b c+a a+bb+c a+bb+cc+a|=0`.Show that either `a" "+" "b" "+" "c" "=" "0" "or" "a" "=" "b" "=" "c`.

Answer» ` Delta=|{:(b+c,,c+a,,a+b),(c+a,,a+b,,b+c),(a+b,,b+c,,c+a):}|`
Applying `R_(1) to R_(1)+R_(2)+R_(3)` we have
` Delta=|{:(2(a+b+c),,2(a+b+c),,2(a+b+c)),(c+a,,a+b,,b+c),(a+b,,b+c,,c+a):}|`
`=2 (a+b+c) |{:(1,,1,,1),(c+a,,b-c,,b-a),(a+b,,c-a,,c-b):}|`

Applying `C_(2) to C_(2)-C_(1) " and "C_(3) to C_(3)-C_(1)` we have
`Delta =2(a+b+c) |{:(1,,0,,0),(c+a,,b-c,,b-a),(a+b,,c-a,,c-b),(,,,,):}|`
Expanding along `R_(1)` we have
`Delta =2 (a+b+c) (1) [(b-c)(c-b)-(b-a)(c-a)]`
`=2 (a+b+c) [-b^(2)-c^(2)+2bc-bc+ba+ac-a^(2)]`
`=2 (a+b+c) [ab+bc+ca-a^(2)-b^(2)-c^(2)]`
It is given that `Delta =0` Therefore,
`(a+b+c) [ab+bc+ca-a^(2)-b^(2)-c^(2)]=0`
`" or " (1//2)(a+b+c) [(a-b)^(2)+(b-c)^(2)+(c-a)^(2)=0`
`" or Either " a+b+c =0`
` " or " (a-b)^(2) +(b-c)^(2) +(c-a)^(2)=0`
` rArr " Either " a+b+c =0 " or " a=b=c`
499.

Using the factor theorem it is found that `a+b , b+ca n dc+a`are three factors of the determinant`|-2a a+b a+c b+a-2bb+cc+a c+b-2c|dot`The other factor in the value of the determinant is(a) 4 (b)2 (c_ `a+b+c`(d) none of theseA. 4B. 2C. `a + b + c`D. none of these

Answer» Correct Answer - A
500.

Evalute the determinants in queations 1 and 2 : Find the values of x, if (i) `|{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}|` (ii)`|{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|`

Answer» (i) `|{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}|`
`rArr" "2-20=2x^(2)-24`
`rArr" "2x^(2)=2-20+24=6`
`rArr" "x^(2)=3" "rArr" "x=+-sqrt3`
(ii)`|{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|`
`rArr" "10-12=5x-6x`
`rArr" "-2=-x`
`rArr" "x=2`