InterviewSolution
Saved Bookmarks
| 1. |
If `f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|,`using properties of determinants, find the value of `f(2x)-f(x)dot` |
|
Answer» Using the property`R_2rarrR_2-xR_1` and `R_3rarrR_3-xR_2` we get=>`f(x)=|(a,-1,0),(0,a+x,-1),(0,0,a+x)|` evaluating the determinant we get=>`f(x)=a(a+x)^2` `f(2x)=a(a+2x)^2` `f(2x)-f(x)=a((a+2x)^2-(a+x)^2)` `f(2x)-f(x)=3ax^2+2a^2x` |
|