1.

If `C = 2 cos theta`, then the value of the determinant `Delta = |(C,1,0),(1,C,1),(6,1,c)|`, isA. `(sin 4 theta)/(sin theta)`B. `(2 sin^(2) 2 theta)/(sin theta)`C. `4 cos^(2) theta (2 cos theta -1)`D. none of these

Answer» Correct Answer - D
We have,
`Delta = |(C,1,0),(1,C,1),(6,1,c)|`
`rArr Delta = |(0,1,0),(1 -C^(2),C,1),(6-C,1,C)| " " ["Applying " C_(1) rarr C_(1) - C C_(2)]`
`rArr Delta = -|(1 -C^(2),1,),(6 -C,C,)|` [Expanding along `R_(1)`]
`rArr Delta = - (C -C^(3) - 6 + C)`
`rArr Delta = C^(3) - 2C + 6`
`rArr Delta = 8 cos^(3) theta - 4 cos theta + 6`
Hence, option (d) is correct


Discussion

No Comment Found