

InterviewSolution
Saved Bookmarks
1. |
If `a gt 0` and discriminant of `ax^(2) + 2bx + c` is negative, then `Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)|`, isA. positiveB. `(ac -b^(2)) (ax^(2) + 2bx +c)`C. negativeD. 0 |
Answer» Correct Answer - C It is given that the discriminant of `ax^(2) + 2bx + c` is negative. `:. 4b^(2) - 4ac lt 0 rArr b^(2) - ac lt 0 rArr ac -b^(2) gt 0` Also, `a gt 0` and discriminant is negative. `:. Ax^(2) + 2bx + c gt 0` for all `x in R` Now, `Delta = |(a,b,ax + b),(b,c,bx + c),(ax +b,bx+c,0)|` `rArr Delta = |(a,b,0),(b,c,0),(ax +b,bx +c,- x (ax +b) - (bx +c))|` `rArr Delta = |(a,b,0),(b,c,0),(ax +b,bx +c,-(ax^(2) + 2bx +c))|` `rArr Delta = -(ax^(2) + 2bx + c) (ac -b^(2)) lt 0` [Using (i) and (ii)] |
|