1.

Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]16 &4 & 3\end{vmatrix}\)

Answer»

Let Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]16 &4 & 3\end{vmatrix}\)

Applying R3 → R3 – R2, we get

⇒ Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]4 &1 & -2\end{vmatrix}\)

Applying R2 → R2 – R1, we get

⇒ Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]4 & 1 & -2 \\[0.3em]4 &1 & -2\end{vmatrix}\)

As, 

R2 = R3,

Therefore the value of the determinant is zero.



Discussion

No Comment Found