

InterviewSolution
Saved Bookmarks
1. |
Without expanding, show that the value of each of the following determinants is zero :\(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]16 &4 & 3\end{vmatrix}\) |
Answer» Let Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]16 &4 & 3\end{vmatrix}\) Applying R3 → R3 – R2, we get ⇒ Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]12 & 3 & 5 \\[0.3em]4 &1 & -2\end{vmatrix}\) Applying R2 → R2 – R1, we get ⇒ Δ = \(\begin{vmatrix}8 &2 & 7 \\[0.3em]4 & 1 & -2 \\[0.3em]4 &1 & -2\end{vmatrix}\) As, R2 = R3, Therefore the value of the determinant is zero. |
|