

InterviewSolution
Saved Bookmarks
1. |
Evaluate the following determinants:(i) \(\begin{vmatrix} x& -7 \\[0.3em] x & 5x + 1 \end{vmatrix}\)(ii) \(\begin{vmatrix} cos θ& -sin θ\\[0.3em]sin θ& cos θ\end{vmatrix}\)(iii) \(\begin{vmatrix} cos 15°& sin 15°\\[0.3em]sin 75°& cos 75°\end{vmatrix}\)(iv) \(\begin{vmatrix} a + ib & c + id\\[0.3em]-c + id& a - ib\end{vmatrix}\) |
Answer» (i) |A| = x (5x + 1) – (–7) x |A| = 5x2 + 8x (ii) |A| = cos θ × cos θ – (–sin θ) x sin θ |A| = cos2θ + sin2θ As we know that cos2θ + sin2θ = 1 |A| = 1 (iii) |A| = cos15° × cos75° + sin15° x sin75° As we know that cos (A – B) = cos A cos B + Sin A sin B On substituting this we get, |A| = cos (75 – 15)° |A| = cos60° |A| = 0.5 (iv) |A| = (a + ib) (a – ib) – (c + id) (–c + id) = (a + ib) (a – ib) + (c + id) (c – id) = a2 – i2 b2 + c2 – i2 d2 As we know that i2 = -1 = a2 – (–1) b2 + c2 – (–1) d2 = a2 + b2 + c2 + d2 |
|