

InterviewSolution
Saved Bookmarks
1. |
Solve by matrix method : `2x+y=5` `x-y = 1` |
Answer» Write the given equations in matrix form `[{:(2,1),(1,-1):}][{:(x),(y):}]=[{:(5),(1):}]` `rArr" " AX=B` `"Where "A=[{:(2,1),(1,-1):}],X=[{:(x),(y):}]" and B"=[{:(5),(1):}]` `|A|=[{:(2,1),(1,-1):}]=-2-1 =-3 ne0` `therefore" A is invertible",` Cofactors of the elements of matrix A. `c_(11)=(-1)^(1+1)(-1)=-1` `x_(12)=(-1)^(1+2)1=-1` `c_(21)=(-1)^(2+1)1=-1` `c_(22)=(-1)^(2+2)2=2` `therefore" adj. A"=[{:(c_(11),c_(12)),(c_(21),c_(22)):}]` `[{:(-1,-1),(-1,2):}]=[{:(-1,-1),(-1,2):}]` `"and "A^(-1)=1/(|A|)" adj. A"=-1/3[{:(-1,-1),(-1,2):}]` Now AX=B `rArr" "AX=B` `rArr[{:(x),(y):}]=-1/3[{:(-1,-1),(-1,2):}]=-1/3[{:(-5,-1),(-5,+2):}]=[{:(2),(1):}]` `therefore" "x=2, y=1.` |
|