

InterviewSolution
Saved Bookmarks
1. |
Find a matrix B of order `2xx2` such that : `[{:(1,1),(-2,3):}]B=[{:(3,4),(-1,2):}]` |
Answer» `LetA=[{:(1,1),(-2,3):}]" and "C=[{:(3,4),(-1,2):}]` `therefore" "|A|=[{:(1,1),(-2,3):}]=3-(-2)=5ne0` `therefore" A is invertible".` Cofactors of martrix A `c_(11)=(-1)^(1+1).3=3` `c_(12)=(-1)^(1+2).(-2)=2` `c_(21)=(-1)^(2+1).1=-1` `c_(22)=(-1)^(2+2).1=1` `therefore" adj.A"=[{:(c_(11),c_(12)),(c_(21),c_(22)):}]=[{:(3,2),(-1,1):}]=[{:(3,-1),(2,1):}]` `"and "A^(-1)=1/(|A|)"adj.A"=1/5[{:(3,-1),(2,1):}]` From eq. (1) AB = C `rArr" " A^(-1) (AB) = A^(-1) C` `rArr" " (A^(-1)A)B=1/5[{:(3,-1),(2,1):}][{:(3,4),(-1,2):}]` (From associative law) `rArr" "IB=1/5[{:(9+1,12-2),(6-1,8+2):}](becauseA^(-1)A=I)` `rArr" "B=[{:(2,2),(1,2):}]` |
|