

InterviewSolution
Saved Bookmarks
1. |
Let D be the determinant given by `D = |(1,cos (beta - alpha),cos (gamma - alpha)),(cos (alpha -beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)|` where `alpha, beta and gamma` are real number Statement -1: The value of D is zero Statement 2: The determinant D is expressible as the product of two determinant each equal to zeroA. Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 2B. Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 2C. Statement 1 is true, Statement 2 is FalseD. Statement 1 is False, Statement 2 is true |
Answer» Correct Answer - A We have, `D = |(1,cos (beta - alpha),cos (gamma - alpha)),(cos (alpha - beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)|` `= |(cos^(2) alpha + sin^(2) alpha,cos beta cos alpha + sin beta sin alpha,cos gamma cos alpha + sin gamma sin alpha),(cos alpha cos beta + sin alpha sin beta,cos^(2) beta + sin^(2) beta,cos gamma cos beta + sin gamma sin beta),(cos alpha cos gamma + sin alpha sin gamma,cos beta cos gamma + sin beta sin gamma,cos^(2) gamma + sin^(2) gamma)|` `= |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma ,sin gamma,0)| |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma,sin gamma,0)|= 0` So, both the statement are true and statement 2 is a correct explanation for statement 1 |
|