Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

John and Ismail donated some money to the Relief Fund. The amount paid by Ismail is ₹85 more than twice that of John. If the total money paid by them is ₹4000, then find the amount of money donated by John.

Answer»

Let the amount donated by John = ₹x 

The amount donated by Ismail is ₹85 more than twice of John. 

So, the amount donated by Ismail = ₹(2x + 85) 

Total amount = John amount + Ismail amount = ₹4000 

⇒ x + 2x + 85 = 4000 

⇒ 3x + 85 = 4000 

⇒ 3x + 85 – 85 = 4000 – 85 (Subtract 85 on both sides) 

⇒ 3x = 3915

⇒ 3x/3 = 3915/3 (Divide by 3 on both sides) 

⇒ x = 1305 

∴ Money donated by John = x = ₹ 1305 

∴ Money donated by Ismail = 2x + 85 

= 2(1305) + 85 

= ₹2695

2.

Find two consecutive natural numbers whose sum is 125.

Answer»

Let the number = x 

Consecutive number of x = x + 1 

Given that, x + (x + 1) = 125 

⇒ 2x + 1 = 125 

⇒ 2x = 125 – 1 

⇒ 2x = 124

⇒ x = 124/2

x = 62 and x + 1 = 62 + 1 = 63 

∴ Required numbers are 62 and 63. 

Check: 

Numbers: 62, 63 

Sum = 62 + 63 = 125 

Hence verified.

3.

The sum of three consecutive integers is 30 then the least number is …………….?A) 7B) 8C) 9D) 10

Answer»

Correct option is C) 9

4.

Solve the following equations and check the result (Method of Transposition) : 25 = 18 – 7(b – 6)

Answer»

Given 25 = 18 – 7(b – 6) 

⇒ 25 – 18 = l8 – 7(b – 6) – 18 (Subtract 18 on both sides) 

⇒ 7 = – 7(b – 6) 

⇒ \(\frac {7}{-7} = \frac {-7(b-6)}{-7}\)(Divide by – 7 on both sides) 

⇒ – 1 = b – 6 

⇒ – 1 + 6 = b – 6 + 6 (Add 6 on both sides) 

⇒ 5 = b 

∴ b = 5 (By transposition) 

Check: 

Substitute b = 5 in the given equation. 

RHS = 18- 7(b – 6) – = 18-7(5-6) 

= 18 – 7(- 1) 

= 18 + 7 = 25 = LHS 

Hence verified.

5.

Solution of 2x + 5 = 13 is A) 9B) 4C) – 9D) – 4

Answer»

Correct option is B) 4

2x + 5 = 13

⇒ 2x = 13 - 5 = 8

⇒ x = 8/2 = 4

6.

LHS of the equation 2(x – 3) = 5(2x + 4) isA) 2B) x – 3C) 2(x – 3)D) 5(2x + 4)

Answer»

Correct option is C) 2(x – 3)

7.

2x + 5 = K then x =A) K – 5B) (k - 5)/2C) (k + 5)/2D) k/2 - 5

Answer»

(B) \(\frac{k-5}2\)

 2x + 5 = k

⇒ 2x = k - 5

⇒ x = \(\frac{k-5}2\)

8.

R.H.S of 2 = y – 5 iA) y – 5B) 2C) yD) – 5

Answer»

Correct option is A) y – 5

9.

L.H.S of 4x – 5 = 3 is ?A) 3B) 4x – 5C) -5D) 4x

Answer»

Correct option is B) 4x – 5

10.

Write the following equations in statement form.(i) m – 5 = 12(ii) a/3 = 4(iii) 4x + 7 = 15(iv) 2 – 3y = 11

Answer»

(i) A number m is decreased by 5 is 12.

(ii) One third of a is 4.

(iii) Sum of 4 times of x and 7 is 15. (or) 7 is added to 4 times of x is 15.

(iv) 2 is decreased by 3 times of y is 11. (or) 3 times of y is subtracted from 2 is 11.

11.

If y = – 2 then 3 + y = ………………?A) 1B) – 1C) 0D) 4 

Answer»

Correct option is A) 1

y = -2 then 3 + y = 3 + (-2)

= 3 - 2 = 1

12.

If -9/z = -11/5 then -(z) = ………………?A) 45/11B) -11/45C) -45/11D) 11/45

Answer»

Correct option is C) -45/11

-9/z = -11/5

⇒ z = -9 x 5/-11 = \(\frac{5}{-11}=\frac{9\times5}{11} = \frac{45}{11}\) 

\(\therefore\) -(z) = \(-\frac{45}{11}\)

13.

If 198 = 25 z – 2 ⇒ z = ……………..?A) -1/8B) 1/8C) – 8D) 8

Answer»

Correct option is D) 8

198 = 25z - 2

⇒ 25z = 198 +2 = 200

⇒ z = 200/25 = 8

14.

4x – 3 = 3x – 4 ⇒ x = ………………. A) 1B) – 1C) 0D) 1/7

Answer»

Correct option is B) – 1

4x - 3 = 3x - 4

⇒ 4x - 3x = 3 - 4

⇒ x = -1

15.

3(x – 3) = 5 (2x + 1) ⇒ x = ………………?A) – 2B) 2C) 1D) – 1

Answer»

Correct option is A) – 2

3(x - 3) = 5(2x + 1)

⇒ 3x - 9 = 10x + 5

⇒ 10x - 3x = -9 - 5

⇒ 7x = -14

⇒ x = -14/7 = -2

16.

From the given fig ∠x° = ……………..? A) 18°B) 54°C) 72°D) 36°

Answer»

Correct option is D) 36°

3x+2x =180 degree 
5x =180 
then x =36
option D
17.

The length of the line segment if x = 2cm isA) 4cmB) 8cmC) 6 cmD) 16cm

Answer»

Correct option is B) 8cm

18.

7x – 11 = 7 – 11 x ⇒ x = ……………….?A) – 1B) 2C) 1D) 0

Answer»

Correct option is C) 1

7x - 111 = 7 - 11x

⇒ 7x + 11x = 7 + 11

⇒ 18x = 18

⇒ x = 18/18 = 1

19.

A number increased by 7 is represented asA) x – 7B) 7xC) x/7D) 7 + x

Answer»

D) 7 + x

A number x is increased by 7 is represented as x + 7.

20.

The sum of two numbers isl6. If one of them is p, then the other number is ……………..A) 16 + pB) 16 – pC) 16 ÷ pD) 16 × p

Answer»

Correct option is B) 16 – p

21.

A quantity with positive sign when taken to other side of the equation, then its sign becomesA) +B) ×C) ÷D) - 

Answer»

Correct option is D) –

22.

If 3 is subtract from twice of a number is equal to 27 then the number is ………………?A) 30B) -15C) 15D) 10

Answer»

C) 15

Let the number be x.

\(\therefore\) According to given condition, we have

2x - 3 = 27

⇒ 2x = 27 + 3 = 30

⇒ x = 30/2 = 15

23.

If the present Age of Kiran is 15 years, then ‘y’ years later his age will be ……………? (years)A) 15 + yB) 15 – yC) 15 × yD) 15 ÷ y

Answer»

Correct option is A) 15 + y

24.

A quantity which divides LH.S of an equation ……………. the R.H.S.A) addB) subtractC) multipliesD) divides

Answer»

Correct option is C) multiplies

25.

The sum of two numbers is 35. One of the numbers exceeds the other by 7. Find the numbers.

Answer»

Let the first number = x 

Then the second number = x + 7 (exceeds first number by 7) 

Sum of two numbers = 35 According to problem, x + x + 7 = 35 

⇒ 2x + 7 = 35 

⇒ 2x = 35 – 7

 ⇒ 2x = 28

⇒ x = 28/2

⇒ x = 14 x + 7 

= 14 + 7 = 21 

∴ The two numbers are 14 and 21

Check: 

Numbers: 14, 21 

Sum = 14 + 21 = 35 

Hence verified

26.

Age of a girl is 11 years what is the age after x years?A) xB) 11 + xC) 11 – xC) 11x

Answer»

Correct option is B) 11 + x

27.

3 times a number exceeds 20 by 2. How do you represent this ?A) 3x + 2 = 20B) 3x = 22C) 3x = 16D) 3x – 2 = 22

Answer»

B) 3x = 22

Let the number be x.

\(\therefore\) According to given condition.

3x - 2 = 20

⇒ 3x = 20 + 2 = 22

28.

Sum of two numbers is 29. If one number is x then the other is A) 29 + xB) 29xC) x – 29D) 29 – x

Answer»

D) 29 – x

Let the other number by y.

Then x + y = 29

⇒ y = 29 - x

i.e., other number be x 29 - x

29.

Solve: 3k + 4 = 28

Answer»

3k + 4 = 28 

⇒ 3k + 4 – 4 = 28 – 4 (Add both sides ‘- 4’) 

⇒ 3k = 24

⇒ 3k/3 = 24/4 (Divide both sides by ‘3’)

⇒ k = 8

Check: 

Substitute k = 8 in the given equation. 

LHS = 3k + 4 

= 3(8) + 4 

= 24 + 4 = 28 = RHS 

Hence verified.

30.

Solve: – 4(x – 1) = 16

Answer»

– 4(x – 1) = 16 

⇒ 4x + 4 = 16 (Distributive property) 

⇒ – 4x + 4 – 4 = 16 – 4 (Subtract both sides ‘4’) 

⇒ – 4x = 12 

⇒ (- 4x) × (- 1) = 12 × (- 1) (Multiply with ‘- 1 ‘on both sides) 

⇒ 4x = – 12

⇒ 4x/4 = -12/4 (Divide both sides by ‘4’) 

⇒ x = – 3 

Check: 

Substitute x = – 3 in the given equation. 

LHS = – 4(x – 1) 

= – 4(- 3 – 1) 

= – 4 (- 4) = 16 

= RHS 

Hence verified. 

31.

Solve : 5(x + 1) – 2(x – 7) = 13

Answer»

5(x + 1) – 2(x – 7) = 13 

⇒ 5x + 5 – 2x + 14 = 13 (distributive law) 

⇒ (5x – 2x) + (5 + 14) = 13 (regrouping like terms) 

⇒ 3x +19 = 13 

⇒ 3x = 13 – 19 (∵ +19 transposed arid becomes)

⇒ 3x = – 6

⇒ x = -6/3 (∵ × 3 transposed and becomes ÷ 3) 

⇒ x = – 2

32.

Solve: 2(b + 3) + 13 = 27

Answer»

2(b + 3) + 13 = 27 

⇒ 2b + 6 + 13 = 27 (distributive law) 

⇒ 2b + 19 = 27 

⇒ 2b = 27 – 19 (∵+ 19 transposed and becomes – 19) 

⇒ 2b = 8 

⇒ b = 8/2 (∵ × 2 transposed and becomes ÷ 2) 

⇒ b = 4 

Check: 

Substitute b = 4 

LHS = 2(b + 3) + 13 

= 2(4 + 3) + 13 

= 2(7) + 13 

= 14 + 13 

= 27 = RHS 

Hence verified.

33.

Write the equation in statement form :  3m – 13 = 25

Answer»

13 is taking away from 3 times of m is 25.

34.

Write the equation in statement form :  2y = 15

Answer»

Two times (twice) a number is 15.

35.

In the given figure the perimeter of the square is 40m. Then find x.

Answer»

From the above figure, 

Side of square = (3x – 5) m 

Perimeter of square = 40 m

⇒4 × side = 40 ⇒ 4 × (3x – 5) = 40

⇒ \(\frac {4(3x-5)}{4} = \frac {40}{4}\) (Divide by 4 on both sides) 

⇒ 3x – 5 = 10 

⇒ 3x – 5 + 5 = 10 + 5 (Add 5 on both sides) 

⇒ 3x = 15

⇒ 3x/3 = 15/3 (Divide by 3 on both sides)

∴ x = 5 m

36.

Find the value of variable ‘x’: If two numbers are in the ratio 2 : 3 and their difference is 5, then find largest number.

Answer»

Let largest number = 3x and smallest

number = 2x 

Difference = 3x – 2x = x 

But as per the problem difference = 5 

⇒ x = 5 

∴ Largest number = 3x = 3 × 5 = 15

37.

Find the value of variable ‘x’ : If the perimeter of the following triangle is 15 cm

Answer»

Perimeter of a triangle = 15 cm 

Perimeter = x + x + 2 + 2x – 3 = 4x – 1 

∴ 4x – 1 = 15 

⇒ 4x = 15 + 1

⇒ 4x = 16 

⇒ x = 4

38.

Write the equation in statement form :  n/4 =5

Answer»

One fourth of n is 5.

39.

Develop equations from the pictures given below and solve pictorially.

Answer»

x + x + x = 5 + 5 + 1 + 1 

3x = 12

40.

Find the value of variable x from the below diagrams.Angle at ‘O’ is straight angle

Answer»

Straight angle = 180° 

∠ AOB = 180° 

∠ AOB + ∠ BOD = 180° 

x + 30° + x = 180° 

⇒ 2x + 30° = 180° 

⇒ 2x + 30° – 30° – 180°- 30° (Subtract 30° on both sides) 

⇒ 2x = 150°

⇒ 2x/2 = 150°/2 (Divide by 2 on both sides)

∴ x = 75°

41.

An equation is multiplied or divided by two different numbers on either side What will happen to the equality?

Answer»

Consider an equation 7x = 14 

If we multiply by two different numbers 5 and 8 on either side. 

7x × 5 = 14 × 8 

⇒ 35x = 112 

So, the equation 7x = 14 is not equal to 35x = 112

42.

The length of a rectangle is 20m more than its width. If the perimeter of the rectangle is 100m, then find the length and breadth of rectangle.

Answer»

Let the width of a rectangle (b) = x m 

Then the length of a rectangle (l) 

= 20 more than its width 

= (x + 20) m 

Perimeter of the rectangle = 100 m 

⇒ 2(1 + b) = 100 

⇒ 2(x + 20 + x) = 100 

⇒ 2(2x + 20) = 100 

⇒ 4x + 40 = 100 

⇒ 4x + 40 – 40 = 100 – 40 (Subtract 40 on both sides) 

⇒ 4x = 60 4x 60

⇒ 4x/4 = 60/2 (Divide by 4 on both sides) 

⇒ x = 15 m 

∴ Width x = 15 m 

Length = x + 20 = 15 + 20 = 35 m

43.

In a family, the consumption of rice is 4 times that of wheat. The total consumption of the two cereals in a month is 30kg. Find the quantities of rice and wheat consumed in the family

Answer»

Let the quantity of wheat consumed in the month x kg. 

Quantity of rice = 4 times of wheat = 4x kg 

Quantity of rice + Quantity of wheat = 30 kg 

⇒ 4x + x = 30 

⇒ 5x = 30

⇒ 5x/5 = 30/5 (Divide by 5 on both sides) 

⇒ x = 6 kg 

∴ Quantity of wheat = 6 kg 

Quantity of rice = 4x = 4 × 6 = 24 kg

44.

From the given figure the perimeter of a rectangle is ……………… units.A) 2pB) 2qC) 0D) pq

Answer»

Correct option is A) 2p

45.

Write the equation in statement form :  x + 4 = 9

Answer»

4 is added to a number is 9.

46.

Write simple equation for the verbal statements : If you add one third to m, then you get 25.

Answer»

Given number = m 

By adding 1/3 to m = m + 1/3 

then, m + 1/3 = 25.

47.

Write simple equation for the verbal statements : Sum of angles x, (x + 20) is a straight angle.

Answer»

Given angles are x, x + 20 

Sum of angles = x + x + 20 

Sum of angles is straight angle (180°).

⇒ x + x + 20 = 180° 

∴ 2x + 20 = 180°

48.

Write simple equation for the verbal statements : Perimeter of a rectangle whose length is 2 cm more than its width is 16 cm.

Answer»

Let width of rectangle = x 

Length of rectangle 

= 2 more than width = x + 2 

Perimeter = 2 (length + width) 

= 2(x + 2 + x) = 2(2x + 2) 

Given Perimeter = 16 cm 

∴ 4x + 4 = 16

49.

Convert simple equation into statements : y – 7 = 11

Answer»

Taking away 7 from ‘y’ is 11.

50.

Convert the mathematical statements into simple equations :The sum of 3 times of n and 7 is 13

Answer»

Let the number = n 

3 times the number = 3n 

By adding 7 the result = 3n + 7 

∴ 3n + 7 = 13