Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Solve the equation and check the result : 3(p – 7) – 4 = 5

Answer»

Given 3(p – 7) – 4 = 5 

⇒ 3(p – 7) – 4 + 4 = 5 + 4 (Add 4 on both sides) 

⇒ 3(p – 7) = 9

\(\frac {3(p-7)}{3} = \frac 93\) (Divide by 3 on both sides) 

⇒ p – 7 = 3 

⇒ p – 7 + 7 = 3 + 7 (Add 7 on both sides) 

⇒ p = 10 

Check: 

Substitute p = 10 in 

3(p – 7) – 4 = 5

LHS = 3(p – 7) – 4. 

= 3(10 – 7) – 4. 

= 3 × 3 – 4 

= 9 – 4 = 5 = RHS 

Hence verified.

102.

Solve the equation and check the result : – 3(m + 5) + 1 = 13

Answer»

Given – 3(m + 5) 4-1 = 13 

⇒ – 3(m + 5)+ 1 – 1 = 13 – 1 (Subtract 1 on both sides) 

⇒ – 3(m + 5) = 12

⇒ \(\frac {-3(m+5)}{-3} = \frac {12}{-3}\) (Divide by – 3 on both sides) 

⇒ m + 5 = – 4 

⇒ m + 5 – 5 = – 4 – 5 (Subtract 5 on both sides) 

⇒ m = – 9 

Check: 

Substitute m = – 9 in – 3(m + 5) + 1 = 13 

LHS = – 3(m + 5) + 1 

= – 3(- 9 + 5) + 1 

= (- 3 × – 4) + 1 

= + 12 + 1 = 13 = RHS 

Hence verified.

103.

Solve the equation and check the result : a – 2.3 = 1.5

Answer»

Given a – 2.3 = 1.5 

⇒ a – 2.3 + 2.3 = 1.5 + 2.3 (Add 2.3 ort both sides) 

⇒ a = 3.8 

Check: 

Substitute a = 3.8 in a – 2.3 =1.5 

LHS = a – 2.3 

= 3.8 – 2.3 

= 1.5 = RHS 

Hence verified.

104.

Solve the simple equation and check the results : 18 – 7n = – 3

Answer»

Given 18 – 7n = – 3 

⇒ 18 – 7n – 18 = – 3 – 18 (Subtract 18 on both sides) 

⇒ – 7n = – 21

⇒ -7n/-7n = -21/-7 (Divide by – 7 on both sides)

⇒ n = 3

Check: 

Substitute n = 3 in 18 – 7n = – 3 

LHS = 18 – 7n 

= 18 – 7(3) 

= 18 – 21 

= – 3 = RHS 

Hence verified.

105.

Solve the simple equation and check the results : – 7m = 21

Answer»

Given – 7m = 21

⇒ -7m/-7 = 21/-7 (Divide by – 7 on both sides)

⇒ m = – 3

Check: 

Substitute m = in – 7m = 21 

LHS = – 7m 

= – 7 (- 3) 

= 21 = RHS 

Hence verified.

106.

Solve the simple equation and check the results : 4p + 7 = – 21

Answer»

Given 4p + 7 = – 21 

⇒ 4p + 7 – 7 = – 21 – 7 (Subtract 7 on both sides) 

⇒ 4p = – 28

⇒ 4p/4 = -28/4 (Divide by 4 on both sides)

⇒ p = – 7

Check:

Substitute p = – 7 in 4p + 7 = – 21 

LHS = 4p + 7 

= 4(- 7) + 7 

= – 28 + 7 

= – 21 = RHS 

Hence verified.

107.

Solve the simple equation and check the results : 3(k + 4) = 21

Answer»

Given 3(k + 4) = 21 

⇒ 3k + 12 = 21 (Distributive property) 

⇒ 3k + 12 – 12 = 21 – 12 (Subtract 12 on both sides) 

⇒ 3k = 9

⇒ 3k/3 = 9/3 (Divide by 3 on both sides)

⇒ k = 3

Check: 

Substitute k = 3 in 3(k + 4) = 21 

LHS = 3(k + 4) 

= 3(3 + 4) 

= 3 × 7 = 21= RHS 

Hence verified.

108.

Solve the simple equation and check the results : 9 (a + 1) + 2 = 11

Answer»

Given 9(a + 1) + 2 = 11 

⇒ 9(a + 1) + 2 – 2 = 11 – 2 (Subtract 2 on both sides) 

⇒ 9(a + 1) = 9

⇒ \(\frac {9(a+1)}{9} = \frac 99\) (Divide by 9 on both sides) 

⇒ a + 1 = 1 

⇒ a + 1 – 1 = 1 – 1 (Subtract 1 on both sides) 

⇒ a = 0

Check: 

Substitute a = 0 in 9(a + 1) + 2 = 11 

LHS = 9(a + 1) + 2 

= 9(0 + 1) + 2 

= 9(1) + 2 

= 9 + 2 = 11 = RHS

Hence verified.

109.

Convert simple equation into statements : i) 2x + 13 = 25ii) y/4 – 7 = 1

Answer»

i) If you add 13 to 2 times of number ‘x’ is 25.

ii) 7 is subtracted from one fourth of y is 1.

110.

The present ages of Mary and Joseph are in the ratio 5 : 3. After 3 years sum of their ages will be 38. Find their present ages.

Answer»

Ratio of present ages of Mary and Joseph = 5:3 = 5x : 3x 

After 3 years their ages = 5x + 3 : 3x + 3 

Sum of their ages = 38 

⇒ 5x + 3 + 3x + 3 = 38 

⇒ 8x + 6 = 38

⇒ 8x + 6 – 6 = 38 – 6 (Subtract 6 on both sides) 

⇒ 8x = 32

⇒ 8x/8 = 31/8

⇒ x = 4 

⇒ Ratio of present ages = 5x : 3x 

= 5(4) : 3(4) = 20 : 12 

Present ages of Mary and Joseph are 20 years and 12 years.

111.

Six times a number is 72. Find the number.

Answer»

Let the number be x. 

Given, six times of number = 72 

⇒ 6x = 72

⇒ 6x/6 = 72/6

⇒ x = 12 

∴ The number is 12.

112.

Check whether the value given in the brackets is a solution to the given equation or not : 2n + 5 = 19 (n = 7)

Answer»

Given 2n + 5 = 19 

Substitute n = 7 in the given equation 

2(7) + 5 = 19

⇒ 14 + 5 = 19 

⇒ 19 = 19 

∴ LHS = RHS 

So, n = 7 is the solution of the given equation.

113.

The teacher tells the students in the class that the highest marks obtained by a student in the class is 7 more than twice the lowest marks. If the highest mark is 93, then what is the lowest mark ?

Answer»

Let the lowest mark = x 

then the highest mark twice the lowest mark + 7 = 93 

⇒ 2x + 7 = 93 

⇒ 2x + 7 – 7 = 93 – 7 (Subtract 7 on both side) 

⇒ 2x = 86

⇒ 2x/2 = 86/2 (Divide by 2 on both sides)

⇒ x = 43 

∴ Lowest mark = 43

114.

Fill in the blanks :13 subtracted from twice of a number gives 3, then the number____

Answer»

Let the number be x. 

Twice the number = 2x 13 is subtracted from twice the number 

⇒ 2x- 13 = 3 

⇒ 2x – 13 + 13 = 3 + 13 (Add 13 on both sides) 

⇒ 2x = 16

⇒ 2x/2 = 16/2 (Divide 2 on both sides)

⇒ x = 8 

∴ Number is 8.

115.

Give the steps you will use to separate the variables and then solve the equation : 2(y – 1) =8

Answer»

Given 2(y – 1) = 8 

⇒ 2y – 2 = 8 (Distributive property) 

⇒ 2y – 2 + 2 = 8 + 2 (Add 2 on both sides) 

⇒ 2y = 10

⇒ 2y/2 = 10/2 (Divide by 2 on both sides)

⇒ y = 5

Check: 

Substitute y = 5 in the given equation 

LHS = 2(y – 1) 

= 2(5 – 1) 

= 2 × 4 = 8 = RHS 

Hence verified.

116.

Give the steps you will use to separate the variables and then solve the equation : – 5 + 3x = 16

Answer»

Given – 5 + 3x = 16 

⇒ – 5 + 3x + 5 = 16 + 5 (Add 5 on both sides) 

⇒ 3x = 21

⇒ 3x/3 = 21/3 (Divide by 3 on both sides)

⇒ x = 7

Check: 

Substitute x = 7 in the given equation 

LHS = – 5 + 3x 

= – 5 + 3(7) 

= – 5 + 21 = 16 = RHS 

Hence verified.

117.

Fill in the blanks :If the sum of two numbers is 60. One is thrice the other, then the equation formed is ___________.

Answer»

Let one number be x. 

Other number = thrice of first number = 3(x) = 3x 

Sum of two numbers = 60 

⇒ x + 3x = 60 

⇒ 4x = 60

118.

A bag contains some number of white balls, twice the number of white balls are blue balls, thrice the number of blue balls are the red balls. If the total number of balls in the bag are 27. Then calculate the number of balls of each colour present in the bag.

Answer»

Let the number of white balls = x 

Number of blue balls = twice the number of white balls = 2(x) = 2x 

Number of red balls = thrice the number of blue balls = 3(2x) = 6x 

Total balls = White + Blue + Red = 27 

⇒ x + 2x + 6x = 27 ⇒ 9x = 27

⇒ 9x/9 = 27/9 (Divide by 9 on both sides)

⇒ x = 3 

Therefore white balls x = 3 

Blue balls = 2x = 2(3) = 6 

Red balls = 6x = 6(3) = 18

119.

Give the steps you will use to separate the variables and then solve the equation : 7(x – 3) = 28

Answer»

Given 7(x – 3) = 28 

⇒ 7x – 21 = 28 (Distributive property) 

⇒ 7x – 21 + 21 = 28 + 21 (Add 21 on both sides) 

⇒ 7x = 49

⇒ 7x/7 = 49/7 (Divide by 7 on both sides)

⇒ x = 7

120.

Write the following equations in mathematical statement form.(a) 2m + 7 = 21(b) n/7 = 4

Answer»

(a) 7 more than twice the m is 21.

(b) One seventh of n is 4.

121.

On his birthday Yakshith’s grand father has given ₹ 2000. He used some amount for purchasing books for needy children and thrice of that amount for purchasing food items for orphanage children and the remaining ₹ 200 used for purchasing chocolates . for his friends. Find the amount spent for purchasing books and food items for orphanage children.

Answer»

Let the amount spent for purchasing books for needy children = ₹ x 

Amount spent for purchasing food items for orphanage children = ₹ 3x 

Amount spent for purchasing chocolates for friends = ₹ 200 

Total amount spent = ₹ 2000

⇒ x + 3x + 200 = 2000 

⇒ 4x + 200 = 2000 

⇒ 4x = 2000 – 200 

⇒ 4x = 1800

⇒ x = 1800/4

⇒ x = 450 

∴ Amount spent for purchasing books for needy children = ₹ 450 

Amount spent for purchasing food items for orphanage children = ₹ 3x 

= 3 × 450 = ₹ 1350 

Check: 

Amount = ₹ 450 + ₹ 1350 + ₹ 200 

= ₹ 2000 

Hence Verified.

122.

Convert the mathematical statements into simple equations :4 times a number decreased by 3 is 5.

Answer»

Let the number = m 

4 times the number = 4m

By decreasing 3 the result = 4m – 3 

∴ 4m – 3 = 5

123.

Write simple equation for the verbal statements : The sum of five times of x and 3 is 28.

Answer»

Given number = x 

Five times of a number = 5 ∙ x 

By adding 3 the result = 5x + 3 

∴ 5x + 3 = 28

124.

The length of a rectangle is five meters more than twice of its breadth. If the perimeter is 148 meter, then find the length and breadth of the rectangle.

Answer»

Let the breadth of the rectangle = x, 

length of a rectangle is five more than twice of its breadth. 

Then, length of the rectangle = 2x + 5 

Perimeter of the rectangle = 148m 2 (Length + Breadth) = 148 

⇒ 2(2x + 5 + x) = 148 

⇒ 2(3x + 5) = 148

⇒ 6x + 10 = 148 

⇒ 6x = 148 – 10 

⇒ 6x = 138

⇒ x = 138/6

⇒ x = 23 

∴ Breadth of rectangle = 23 m 

Length of the rectangle = 2x + 5 = (2 × 23) + 5 

= 46 + 5 = 51 m 

Check: 

Length = 51 m, Breadth = 23 m 

Perimeter = 2(l + b) 

= 2(51 + 23) 

= 2(74) 

= 148 m 

Hence Verified.

125.

Convert the mathematical statements into simple equations :Length of rectangle is 3 m more than its breadth and its perimeter is 24 m.

Answer»

Breadth of rectangle = x 

Length of rectangle = x + 3 

Perimeter = 2(x + 3 + x) = 4x + 6 

Given Perimeter = 24 m 

∴ 4x + 6 = 24