Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Write simple equation for the verbal statements : Taking away 7 from p gives 21.

Answer»

Given number = p 

By subtracting 7 from the number = p – 7 

∴ p – 7 = 21

52.

Give the steps you will use to separate the variables and then solve the equation : 8y – 9 = 15

Answer»

Given 8y – 9 = 15 

⇒ 8y – 9 + 9 = 15 + 9 (Add 9 on both sides) 

⇒ 8y = 24

⇒ 8y/8 = 24/8 (Divide by 8 on both sides)

⇒ y = 3

53.

Find the value of variable x from the below diagrams.Perimeter = 36 cm

Answer»

Perimeter of rectangle = 36 cm 2(length + breadth) = 36 

⇒ 2(x + 4 + x) = 36 

⇒ 2(2x + 4) = 36

⇒ \(\frac {2(2x+4)}{2} = \frac {36}{2}\)(Divide by 2 on both sides) 

⇒ 2x + 4 = 18 

⇒ 2x + 4 – 4 = 18 – 4 (Subtract 4 on both sides)

⇒ 2x = 14 .

= 2x/2 = 14/2 (Divide by 2 on both sides) 

∴ x = 7

54.

Convert the mathematical statements into simple equations :5 added to a number is 9.

Answer»

Let the number = x 

By adding 5 to the number = 5 + x 

∴ 5 + x = 9

let the number be x variable 

the equation will be x+5=9 
                                   x = 9-5 
                                    x = 4 
therefore , the value of x is 4 . means the nunber is 4.
55.

A school bus starts with full strength of 40 students. It drops some students at the first bus stop. At the second bus stop, twice the number of students get down from the bus. 8 students get down at the third bus stop and the number of students remaining in the bus is only 5. How many students got down at the first stop and second stop?

Answer»

Let us take the number of students get down at first stop = x 

No. of students get down at the second bus stop = 2x 

No. of students get down at the third bus stop = 8

Remaining students in the bus = 5 

⇒ x + 2x +8 + 5 = 40 

⇒ 3x + 13 = 40 

⇒ 3x = 40 – 13 

⇒ 3x = 27 

⇒ x = 27/3 

⇒ x = 9 

∴ The number of students got down in the first bus stop = 9. 

No. of students got down in second stop = 2x = 2 × 9 = 18.

56.

Choose the correct order of signs from the alternatives :7 + 2 = 2 × 3 (a) = × + (b) = + × (c) = + ÷ (d) + × =

Answer»

Correct option is: (a) = × +

Given 7 + 2 = 2 × 3 ,

 ⇒ 7 = 2 × 2 + 3 

⇒ 7 = 4 + 3 

∴ 7 = 7

57.

The lengths of two of a scale are p,q units then its total length is ……………..?A) p ÷ qB) p – qC) P × qD) p + q

Answer»

Correct option is D) p + q

58.

A number is multiplied by 13 and reduced by 7 gives. Then the number is ……………..?A) 8B) 7C) 6D) 5

Answer»

Correct option is C) 6
 

59.

Fill in the blanks :Changing of term from one side of equation to other side is called __________

Answer»

Changing of term from one side of equation to other side is called Transposition.

60.

5 is added to thrice of a number give 47 then the number is ……………….. A) 14B) 15C) 13D) 21

Answer»

A) 14

Let the required number be x.

\(\therefore\) According to given condition, we have

3x + 5 = 47

⇒ 3x = 47- 5 = 42

⇒ x = 42/3 = 14

61.

Fill in the blanks :If ‘x’ is a natural number, then the solution of x – 8 = – 8 is _________ .

Answer»

x – 8 = – 8 

x – 8 + 8 = – 8 + 8 (Add 8 on both sides) 

x = 0 is not a natural number. 

So, given equation has no solution.

62.

If a number exceeds 2/3 of itself by 7 then the number is.......?A) 21/2B) 14C) 21D) 7

Answer»

Correct option is C) 21

63.

Give the steps you will use to separate the variables and then solve the equation : 5m/3 = 10

Answer»

Given = 5m/3 10

5m/3 x 3 = 10 × 3 (Multiply with 3 on both sides)

⇒ 5m = 30

⇒ 5m/5 = 30/5 (Divide both sides by 5)

⇒ m = 6

Check:

Substitute m = 6 in the given equation,

LHS = 5m/3 = 5(6)/3 = 30/3 = 10 = RHS.

Hence verified.

64.

Check whether the value given in the brackets is a solution to the given equation or not : 3m/5 -7 = 1 (m = 10)

Answer»

Given 3m/5 – 7 = 1

Substitute m = 10 in the given equation

\(\frac {3(10)}{5}\) – 7 = 1

⇒ 3 × 2 – 7 = 1 

⇒ 6 – 7 = 1 

∴ – 1 = 1 LHS ≠ RHS 

So, m = 10 is not the solution of given equation.

65.

Check whether the value given in the brackets is a solution to the given equation or not.5 – 2x = 19 -74

Answer»

Given 5 – 2x = 19 

When x = – 7

LHS = 5 – 2x 

= 5 – 2(- 7) = 5 + 14 = 19 

RHS = 19 

19 = 19 

Here, LHS = RHS 

So, x = – 7 is a solution of the given equation.

66.

Check whether the value given in the brackets is a solution to the given equation or not :2k – 11 = 5 (k = 7)

Answer»

When k = 7 

LHS: 2k – 11 = 2(7) – 11 = 14 – 11 = 3 

RHS: 5 

Here LHS ≠ RHS, 

So k = 7 is not a solution.

67.

Check whether the value given in the brackets is a solution to the given equation or not.2 + 3(m – 1) = 5 (m = -2)

Answer»

Given 2 + 3(m – 1) = 5 

When m = – 2 

LHS = 2 + 3(m – 1) 

= 2 + 3(- 2 – 1) 

= 2 + 3(- 3) = 2 – 9 = – 7 

RHS = 5 

– 7 ≠ 5 

Here, LHS ≠ RHS 

So, m = – 2 is not a solution of given equation.

68.

Check whether the value given in the brackets is a solution to the given equation or not.5n – 7 = 23 (n = 6)

Answer»

Given 5n – 7 = 23 

When n = 6 

L.H.S = 5n – 7 

= 5(6) – 7 

= 30 – 7 

= 23 

R.H.S =23 

Here, L.H.S = R.H.S 

So, n = 6 is a solution of the given equation.

69.

 Solve the equation and check the result : 6(q – 5) = 42.

Answer»

Given 6(q – 5) = 42

⇒ \(\frac {6(q-5)}{6} = \frac {42}{6} \)(Divide by 6 on both sides) 

⇒ q – 5 = 7 

⇒ q – 5 + 5 = 7 + 5 (Add 5 on both sides) 

⇒ q = 12 

Check: 

Substitute q = 12 in 

6(q – 5) = 42 

LHS = 6(q – 5) 

= 6(12 – 5) 

= 6(7) = 42 = RHS 

Hence verified.

70.

The sum of twice a number and 4 is 80, find the number.

Answer»

Let the number be x. 

Twice the number = 2x 

Sum of twice a number and 4 = 80 

2x + 4 = 80 

⇒ 2x + 4 – 4 = 80 – 4(Subtract 4 on both sides) 

⇒ 2x = 76

⇒ 2x/2 = 76/2 (Divide by 2 on both sides) 

⇒ x = 38 

∴ Number = 38

71.

Solve the simple equation and check the results : b/7 = -2

Answer»

Given b/7 = -2

⇒ b/7 × 7 = – 2 × 7 (Multiply by 7 on both sides)

⇒ b = – 14

Check: 

Substitute b = – 14 in b/7 = -2

LHS = b/7 = -14/7 = -2 = RHS

Hence verified

72.

Solve the simple equation and check the results : – 2x = – 10

Answer»

Given – 2x = – 10

⇒ -2x/-2 = -10/-2 (Divide by – 2 on both sides)

⇒ x = 5 

Check: 

Substitute x = 5 in – 2x = – 10 

LHS = – 2x 

= – 2(5) = – 10 = RHS 

Hence verified.

73.

Solve the equation and check the result : 29 – 7y = 1

Answer»

Given 29 – 7y = 1 

⇒ 29 – 7y – 29 = 1 – 29 (Subtract 29 on both sides)

⇒ – 7y = -28 .

⇒ -7y/-7 = -28/-7 (Divide by – 7 on both sides) 

⇒ y = 4 

Check: 

Substitute y = 4 in 29 – 7y = 1

LHS = 29 – 7y 

= 29 – 7(4) 

= 29 – 28 = 1 = RHS 

Hence verified.

74.

Solve the equation and check the result :5x – 17 = 18

Answer»

Given 5x – 17 = 18 

⇒ 5x – 17 + 17 = 18 + 17 (Add 17 on both sides) 

⇒ 5x = 35

⇒ 5x/5 = 35/5 (Divide by 5 on both sides)

⇒ x = 7

Check: 

Substitute x = 7 in 5x – 17 = 18

LHS = 5x – 17

= 5(7) – 17 

= 35 – 17 = 18 = RHS 

Hence verified.

75.

Find the height of the statue from the adjacent diagram.

Answer»

From the given diagram 

Height of the statue (BC) = x m 

Height of the Pedastal (AB) = 1.9 m

Total Height (AC) = 3.6 m

BC + AB = 3.6 m 

⇒ x + 1.9 m = 3.6 m 

⇒ x + 1.9 – 1.9 = 3.6 – 1.9 (Subtract 1.9 on both sides) 

⇒ x = 1.7 m 

∴ Height of the statue = 1.7 m

76.

Find out which operation must be done on both sides of these equations in order to solve them:1. x + 9 = 11 2. x – 4 = 9 3. 8x = 244. \(\cfrac{x}{6}\) = 3

Answer»

1. Subtract 9 from both sides. 

2. Add 4 to both sides. 

3. Divide both sides by 8. 

4. Multiply both sides by 6.

77.

Fill in the blanks :If 2y – 1 = 5, then value of 5y + 3 is ______

Answer»

Given 2y – 1 = 5 

⇒ 2y – 1 + 1 = 5 + 1 (Add 1 on both sides) 

⇒ 2y = 6

⇒ 2y/2 = 6/2 (Divide by 2 on both sides)

∴ y = 3 

then 5y + 3 = 5(3) + 3 

= 15 + 3 = 18

78.

Which of the following is not allowed in a given equation? (a) Adding the same number to both sides of the equation. (b) Subtracting the same number from both sides of the equation. (c) Multiplying both sides of the equation by the same non-zero number. (d) Dividing both sides of the equation by the same number.

Answer»

Correct option is: (d) Dividing both sides of the equation by the same number.

79.

The equation which can’t be solved in integers is (a) 2(x – 3) = 10 (b) x/3 = 5 (c) 5 – 3m = 1 (d) 2k + 1 = 1

Answer»

Correct option is: (c) 5 – 3m = 1

(a) 2(x – 3) = 10 ⇒ 2x – 6 = 10 (Distributive property) 

⇒ 2x – 6 + 6 = 10 + 6 (Add 6 on both sides) 

⇒ 2x = 16

⇒ 2x/2 = 16/2 (Divide by 2 on both sides)

⇒ x = 8 is an integer.

(b) x/3 = 5

⇒ x/3 × 3 = 5 × 3 (Multiply by 3 on both sides) 

⇒ x = 15 is an integer.

(c) 5 – 3m = 1 

⇒ 5 – 3m – 5 = 1 – 5 (Subtract 5 on both sides) 

⇒ – 3m = – 4

⇒ -3m/-3 = -4/-3

⇒ m = 4/3 is not an integer.

(d) 2k + 1 = 1 

⇒ 2k + 1 – 1 = 1 – 1 (Subtract 1 on both sides) 

⇒ 2k = 0 

⇒2k/2 = 0/2 (Divide by 2 on both sides) 

⇒ k = 0 is an integer 

So, our answer is c. 

80.

If a and b are positive integers, then the solution of the equation ax = b will always be a ____________ . (a) positive number (b) negative number (c) 1 (d) 0

Answer»

Correct option is: (a) positive number

If a and b are positive integers and b < a, then ax ± b also positive integer.

81.

Given below are some equations and the values of the variables. Are these values the solutions to those equations?No.EquationValue of the VariableSolution (Yes/No)i.y – 3 = 11y = 3Noii.17 = n + 7n = 10iii.30 = 5xx = 6iv\(\cfrac{m}{2}\) = 14m = 7

Answer»
No.EquationValue of the VariableSolution (Yes/No)
i.y – 3 = 11y = 3No
ii.17 = n + 7n = 10Yes
iii.30 = 5xx = 6Yes
iv\(\cfrac{m}{2}\) = 14m = 7No

 i. y – 3 = 11 

∴ y – 3 + 3 = 11 + 3 

…. (Adding 3 to both sides) 

∴ y + 0 = 14 ∴ y = 14

ii. 17 = n + 7 

∴ 17 – 7 = n + 7 – 7 

…. (Subtracting 7 from both sides) 

∴ 17 + (-7) = n + 7 – 7 

∴ 10 = n 

∴  n = 10

iii. 30 = 5x

\(\therefore\) \(\cfrac{30}{5}\) = \(\cfrac{5x}{5}\)

…. (Dividing both sides by 5) 

∴  6 = 1x 

∴ 6 = x 

∴  x = 6

iv. \(\cfrac{m}{2}\)= 14

\(\cfrac{m}{2}\)× 2 = 14 × 2

…. (Multiplying both sides by 2)

\(\cfrac{m\times2}{2\times1}\) = 28

∴ m = 28

82.

The equation having – 2 as solution is (a) x + 2 = 5 (b) 7 + 3x = 1 (c) 2x + 3 = 7 (d) 2(x + 1) = 4

Answer»

Correct option is: (b) 7 + 3x = 1

(a) x + 2 = 5 

⇒ x + 2 – 2 = 5 – 2 (Subtract 2 on both sides) 

⇒ x = 3 it is not – 2

(b) 7 + 3x = 1 

⇒ 7 + 3x – 7 = 1 – 7 (Subtract 7. on both sides)

⇒ 3x = – 6

⇒ 3x/3 = -6/3 (Divide by 3 on both sides)

∴ x = – 2 

so, solution is – 2 

Similarly, check (c) and (d) also.

83.

Which of the following numbers satisfy the equation – 6 + m = – 10 ? (a) 2 (b) 4 (c) – 4 (d) – 2

Answer»

Correct option is: (c) – 4

– 6 + m = -10 

⇒ – 6 + m + 6 = – 10 + 6 (Add 6 on both sides) 

⇒ m = – 4

84.

Choose the correct order of signs from the alternatives :5 – 6 + 8 = 3 (a) + – = (b) + = – (c) – = × (d) ÷ × =

Answer»

Correct option is: (a) + – =

Given 5 – 6 + 8 = 3 

⇒ 5 + 6 – 8 = 3

⇒ 11 – 8 = 3 

∴ 3 = 3

85.

Choose the correct order of signs from the alternatives :7 + 2 × 6 = 20 (a) = × + (b) × – = (c) × + = (d) ÷ + =

Answer»

Correct option is:  (c) × + =

Given 7 + 2 × 6 = 20 

⇒ 7 × 2 + 6 = 20 

⇒ 14 + 6 = 20 

∴ 20 = 20

86.

Choose the correct order of signs from the alternatives :8 ÷ 2 = 2 × 8 (a) + – = (b) + × (c) ÷ = × (d) × = ÷

Answer»

Correct option is: (b) + ×

Given 8 ÷ 2 = 2 × 8 

⇒ 8 ÷ 2 × 2 = 8 

⇒ 4 × 2 – 8 

∴8 = 8

87.

Choose the correct order of signs from the alternatives :3 = 3 – 7 + 0 (a) – + = (b) + × = (c) – × = (d) = × –

Answer»

Correct option is: (c) – × =

Given 3 = 3 – 7 + 0 

⇒ 3 – 3 × 7 = 0 

⇒ 0 × 7 = 0 

∴ 0 = 0

88.

Choose the correct order of signs from the alternatives : 3 + 1 ÷ 4 = 16 (a) – = × (b) × + = (c) + × = (d) = × +

Answer»

Correct option is: (c) + × =

Given 3 + 1 ÷ 4 = 16 

⇒3 + 1 × 4 = 16 

⇒ 4 × 4 = 16 

∴ 16 = 16

89.

Choose the correct order of signs from the alternatives :2 × 2 + 2 = 2 (a) × ÷ = (b) × = ÷ (c) + × = (d) × + =

Answer»

Correct option is: (a) × ÷ =

Given 2 × 2 + 2 = 2 

⇒ 2 × 2 ÷ 2 = 2 

⇒ 2 × 1 = 2 

∴ 2 = 2

90.

Choose the correct order of signs from the alternatives : 6 = 3 – 6 ÷ 12 (a) = × + (b) ÷ = × (c) + = – (d) ÷ × =

Answer»

Correct option is: (d) ÷ × =

Given 6 = 3 – 6 ÷ 12 

⇒ 6 ÷ 3 × 6 =12 

⇒ 2 × 6 = 12

∴ 12 = 12

91.

Choose the correct order of signs from the alternatives :8 ÷ 4 = 2 + 1 (a) ÷ = + (b) ÷ = × (c) ÷ × = (d) = ÷ ×

Answer»

Correct option is: (b) ÷ = ×

Given 8 ÷ 4 = 2 + 1 

⇒ 8 ÷ 4 = 2 × 1 

∴ 2 = 2

92.

Choose the correct order of signs from the alternatives :15 ÷ 5 = 2 × 1 (a) ÷ × = (b) ÷ = × (c) × = + (d) ÷ = +

Answer»

Correct option is: (d) ÷ = +

Given 15 ÷ 5 = 2 × 1 

⇒ 15 ÷ 5 = 2 + 1 

∴ 3 = 3

93.

Different mathematical operations are given in the two rows below. Find out the number you get in each operation and make equations.1. 16 ÷ 2, 2. 5 × 2, 3. 9 + 4, 4. 72 ÷ 3, 5. 4 + 5,6. 8 × 3, 7. 19 – 10, 8. 10 – 2, 9. 37 – 27, 10. 6 + 7

Answer»

1. 16 ÷ 2 = 8 

2. 5 × 2 = 10 

3. 9 + 4 = 13 

4. 72 ÷ 3 = 24 

5. 4 + 5 = 9

6. 8 × 3 = 24 

7. 19 – 10 = 9 

8. 10 – 2 = 8 

9. 37 – 27 = 10 

10. 6 + 7 = 13

∴ The equations are

1. 16 ÷ 2 = 10 – 2 

2. 5 × 2 = 37 – 27 

3. 9 + 4 = 6 + 7 

4. 72 ÷ 3 = 8 x 3 

5. 4 + 5 = 19 – 10

94.

Solve the following equations:i. y – 5 = 1 ii. 8 = t + 5 iii. 4x = 52 iv. 19 = m – 4

Answer»

i. y – 5 = 1 

∴ y – 5 + 5 = 1 + 5 

…. (Adding 5 to both sides) 

∴ y + 0 = 6 

∴ y = 6

ii. 8 = t + 5 

∴ 8 – 5 = t + 5 – 5 

……(Subtracting 5 from both sides) 

∴ 8 + (-5) = t + 0 

∴ 3 = t 

∴ t = 3

iii. 4x = 52

∴ \(\cfrac{4x}{4} = \cfrac{52}{4}\)

…. (Dividing both sides by 4) 

∴ 1x = 13 

∴ x = 13

iv. 19 = m -4 

∴ 19 + 4 = m – 4 + 4 

…. (Adding 4 to both sides) 

∴ 23 = m + 0 

∴ m = 23

95.

Write the given information as an equation and find its solution:i. Haraba owns some sheep. After selling 34 of them in the market, he still has 176 sheep. How many sheep did Haraba have at first?ii. Sakshi prepared some jam at home and filled it in bottles. After giving away 7 of the bottles to her friends she still has 12 for herself. How many bottles had she made in all? If she filled 250g of jam in each bottle, what was the total weight of the jam she made?iii. Archana bought some kilograms of wheat. She requires 12 kg per month and she got enough wheat milled for 3 months. After that, she had 14 kg left. How much wheat had Archana bought altogether?

Answer»

i. Let the number of sheep before selling be x. 

∴ x – 34 = 176 

∴ x – 34 + 34 = 176 + 34 

….(Adding 34 to both sides) 

∴ x + 0 = 210 

∴ x = 210

The number of sheep with Haraba before selling is 210.

ii. Let the total number of bottles be x. 

∴ x – 7 = 12

∴ x – 7 + 7 = 12 + 7 

….(Adding 7 to both sides)

∴ x + 0 = 19 

∴ x = 19 

Weight of jam in each bottle = 250g 

∴ Total weight of jam = 19 × 250g = 4750 g 

\(\cfrac{4750}{1000}\) kg = 4.75 kg

∴ The total number of bottles of jam made by Sakshi is 19, and the total weight of jam made is 4.75 kg.

iii. Let the total wheat bought by Archana be x kg. Wheat used in 1 month = 12 kg

∴ Wheat used in 3 months = 3 × 12 = 36 kg 

∴ x – 36 = 14 

∴ x – 36 + 36 = 14 + 36 

….(Adding 36 to both sides) 

∴ x + 0 = 50 

∴ x = 50 

∴ The total amount of wheat bought by Archana was 50 kg.

96.

Convert simple equation into statements : 8m = 24

Answer»

8 times of number ‘m’ is 24.

97.

Solve the following equations:i. \(\cfrac{p}{4}\) = 9ii. x + 10 = 5 iii. m – 5 = -12 iv. p + 4 = -1

Answer»

i. \(\cfrac{p}{4}\) = 9

∴ \(\cfrac{p}{4}\)× 4 = 9 × 4 

…. (Multiplying both sides by 4)

∴ \(\cfrac{p\times4}{4\times1}\)= 36

∴ 1p = 36

∴ p = 36

ii. x + 10 = 5 

∴ x + 10 – 10 = 5 – 10 

…. (Subtracting 10 from both sides) 

∴ x + 0 = 5 + (-10) 

∴ x = -5

iii. m – 5 = -12 

∴m – 5 + 5 = – 12 + 5 

…. (Adding 5 to both sides)

∴ m + 0 = -7 

∴ m = -7

iv. p + 4 = – 1 

∴ p + 4 – 4 = -1 – 4 

…. (Subtracting 4 from both sides) 

∴ p + 0 = (-1) + (-4) 

∴ P = -5

98.

Solve the equation and check the result : 4(3y + 4) = 7.6

Answer»

Given 4(3y + 4) = 7.6.

\(\frac {4(3y+4)}{4} = \frac {7.6}{4}\) (Divide by 4 on both sides) 

⇒ 3y + 4 = 1.9 

⇒ 3y + 4 – 4= 1.9 – 4 (Subtract 4 on both sides) 

⇒ 3y = – 2.1

⇒ 3y/3 = - 2.1/3 (Divide by 3 on both sides) 

⇒ y = – 0.7

Check: 

Substitute y = – 0.7 in 

4(3y + 4) = 7.6 

LHS = 4(3y + 4) 

= 4[3 (- 0.7) + 4] 

= 4[- 2.1 + 4] 

= 4 × 1.9 = 7.6 = RHS 

Hence verified.

99.

Solve the equation and check the result : 3(2k + 1) – 2(k – 5) – 5(5 – 2k) = 16

Answer»

Given 3(2k + 1) – 2(k T 5) – 5(5 – 2k) = 16 

⇒ 6k + 3-2k + 10-25 + 10k = 16 (Distributive property) 

⇒ 14k – 12 = 16 

⇒ 14k – 12 + 12 – 16 + 12 (Add 12 on both sides) 

⇒ 14k = 28

⇒ 14k/14 = 28/14 (Divide by 14 on both sides) 

⇒ k = 2 

Check:

Substitute k = 2 in 

3(2k + 1) – 2(k – 5) – 5(5 – 2k) = 16 

LHS = 3(2k + 1) – 2(k – 5) – 5(5 – 2k) 

= 3[2 × 2 + 1] – 2[2 – 5] – 5[5 – 2 × 2] 

= 3[4 + 1] – 2(- 3) – 5(5 – 4) 

= 15 + 6 – 5 – 16 = RHS

Hence verified.

100.

Solve the simple equation and check the results : 10 + 6a = 40

Answer»

Given 10 + 6a = 40 

⇒ 10 + 6a – 10 = 40 – 10 (Subtract 10 on both sides) 

⇒ 6a = 30

⇒ 6a/6 = 30/6 (Divide by 6 on both sides)

⇒ a = 5 

Check: 

Substitute a = 5 in 10 + 6a = 40 

LHS = 10 + 6a 

= 10 + 6(5) 

= 10 + 30 

= 40 = RHS 

Hence verified.