InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
Factorise:x2 + 6x + 8 |
|
Answer» x2 + 4x + 2x + 8 x(x + 4) + 2(x + 4) (x + 4)(x + 2) |
|
| 202. |
Factorise the expressions:(i) lx2 + mx(ii) 7y2 + 35Z2(iii) 3x4 + 6x3y + 9x2Z |
|
Answer» (i) lx2 + mx = lx2 + mx = l × x × x + m × x = x(lx + m) (ii) 7y2 + 35z2 = 7y2+ 35z2 = 7 × y2 + 7 × 5 × z2 = 7(y2 + 5z2) (iii) 3x4 + 6x3y + 9x2Z = 3x4 + 6x3y + 9x2Z = 3 × x2 × x2 + 3 × 2 × x × x2 × y + 3 × 3 × x2 × z = 3x2 (x2 + 2xy + 3z) |
|
| 203. |
Factorise: y2 + 10y + 24 |
|
Answer» First find the two numbers whose sum =10 and product = 24 Clearly, the numbers are 6 and 4 ∴ we get, y2 +10y + 24 = y2 + 6y + 4y + 24 = y(y+6) + 4(y+6) = (y+4) (y+6) |
|
| 204. |
Factorise the following:i) x2 – 36ii) 49x2 – 25y2iii) m2 – 121iv) 81 – 64x2 |
|
Answer» i) x2 – 36 = x2 – 36 ⇒ (x)2 – (6)2 is in the form of a2 – b2 a2 – b2 = (a + b) (a – b) ∴ x2 – 36 = (x + 6) (x – 6) ii) 49x2 – 25y2 = (7x)2 – (5y)2 = (7x + 5y) (7x – 5y) iii) m2 – 121 = m2 -121 = (m)2 – (11)2 = (m + 11) (m – 11) iv) 81 – 64x2 = 81 – 64x2 = (9)2 – (8x)2 = (9 + 8x) (9 – 8x) |
|
| 205. |
Factorise the following:(i) x4 – y4(ii) a4 – (b + c)4(iii) l2 – (m – n)2 |
|
Answer» (i) x4 – y4 = (x2)2 – (y2)2 is in the form of a2 – b2 a2 – b2 = (a + b) (a – b) x4 – y4 = (x2 + y2)(x2 – y2) = (x2 + y2)(x + y)(x – y) (ii) a4 – (b + c)4 a4 – (b + c)4 = (a2)2 – [(b + c)2]2 = [a2 + (b + c)2] [a2 – (b + c)2] , = [a2 + (b + c)2] (a + b + c) [a – (b + c)] = [a2 + (b + c)2] (a + b + c) (a – b – c) (iii) l2 – (m – n)2 l2 – (m – n)2 = (l)2 – (m – n)2 = [l + m – n] [l – (m – n)] = [l + m -n] [l – m + n] |
|
| 206. |
Factorise :15a3b – 35ab3 A) 5(a3b – 7ab3 ) B) 5ab (3a2 – 7b2) C) 5a b (3a2 – 7b2)D) 5ab (3a2 – 7b) |
|
Answer» B) 5ab (3a2 – 7b2) Correct option is (B) 5ab (3a2 – 7b2) \(15a^3b-35ab^3\) \(=5ab(3a^2-7b^2)\) |
|
| 207. |
Factorise: p2 + 6p + 8 |
|
Answer» First find the two numbers whose sum=6 and product= 8 Clearly, the numbers are 4 and 2 ∴ we get, p2 +6p + 8 = p2 + 4p + 2p + 8 = p (p+4) + 2(p+4) = (p+2) (p+4) |
|
| 208. |
Factorise the following:i) 81x4 – 121x2ii) (p2 – 2pq + q2) - r2iii) (x + y)2 – (x - y)2 |
|
Answer» i) 81x4 – 121x2 = 81x4 – 121x2 = x2(812 – 121) = x2[(9x)2 – (11)2] = x2(9x + 11) (9x -11) ii) (p2 – 2pq + q2) - r2 = (p2 – 2pq + q2) – r2 = (p – q)2 – (r)2 [∵ p2 – 2pq + q2 = (p – q)2] = (p – q + r) (p – q – r) iii) (x + y)2 – (x – y)2 (x + y)2 – (x – y)2 It is in the form of a2 – b2 a = x + y, b = x - y ∴ a2 – b2 = (a + b)(a-b) = (x + y + x – y) [(x + y) - (x – y)] = 2x [x + y - x + y] = 2x x 2y = 4xy |
|
| 209. |
Factorise the following:i) x2y2 – 64ii) 6x2 – 54iii) x2 – 81iv) 2x - 32x5 |
|
Answer» i) x2y2 – 64 = (xy)2 – (8)2 = (xy + 8)(xy – 8) ii) 6x2 – 54 = 6x2 – 54 = 6x2 – 6 x 9 ‘ = 6(x2 – 9) = 6[(x)2 – (3)2] = 6(x + 3) (x – 3) iii) x2 – 81 = x2 – 81 = x2 – 92 = (x + 9 )(x – 9) iv) 2x – 32x5 = 2x – 32x5 = 2x – 2x x 16x4 = 2x(1 – 16x4) = 2x[(12) – (4x2)2] = 2x(1 + 4x2)(1 – 4x2) = 2x(1 + 4x2) [(12 – (2x)2] = 2x(1 + 4x2) (1 + 2x) (1 – 2x) |
|
| 210. |
Factorise: z2 +12z +27 |
|
Answer» First find the two numbers whose sum =12 and product = 27 Clearly, the numbers are 9 and 3 ∴ we get, z2 +12z + 27 = z2 + 9z + 3z + 27 = z (z+9) + 3(z+9) = (z+3) (z+9) |
|
| 211. |
Factorise: 18a3b3 – 27a2b3 + 36a3b2 |
|
Answer» let’s take HCF of above equation By taking 9a2b2 as a common factor for the above equation we get, 18a3b3 – 27a2b3 + 36a3b2 = 9a2b2 (2ab – 3b + 4a) |
|
| 212. |
Factorise: 12x2 -27 |
|
Answer» By simplifying further the above equation is 3(4x2 – 9) By using the formula a2 – b2 = (a+b) (a-b) Now solving for the above equation 3(4x2 – 9) = 3((2x)2 – (3)2) = 3(2x+3) (2x-3) |
|
| 213. |
Factorise: 9x3 – 6x2 + 12x |
|
Answer» let’s take HCF of above equation By taking 3x as a common factor for the above equation we get, 9x3 – 6x2 + 12x = 3x (3x2 – 2x + 4) |
|
| 214. |
Factorise :x3 -12x2 + 36x |
|
Answer» x3 – 12x2 + 36x |
|
| 215. |
Factorise: 8x2 – 72xy + 12x |
|
Answer» let’s take HCF of above equation By taking 4x as a common factor for the above equation we get, 8x2 – 72xy + 12x = 4x (2x -18y +3) |
|
| 216. |
Factorise: 12x2 − 7x + 1 |
|
Answer» 12x2 − 7x + 1 We can find two numbers such that pq = 12 × 1 = 12 and p + q = −7. They are p = −4 and q = −3. Here, 12x2 − 7x + 1 = 12x2 − 4x − 3x + 1 = 4x (3x − 1) − 1 (3x − 1) = (3x − 1) (4x − 1) |
|
| 217. |
Find and correct the errors in the statement:3x/(3x + 2) = 1/2 |
|
Answer» L.H.S = 3x/(3x + 2) ≠ R.H.S The correct statement is 3x/(3x + 2) = 3x/(3x + 2) |
|
| 218. |
Factorise completely : 2a2b2 – 98b4 |
|
Answer» 2a2b2 – 98b4 = 2b2(a2 - 49b2) = 2b2[(a)2 - (7b)2] = 2b2[(a + 7b) (a - 7b) |
|
| 219. |
Factorise the following expressions.(i) a2 + 8a + 16(ii) p2 − 10p + 25(iii) 25m2 + 30m + 9 |
|
Answer» (i) a2 + 8a + 16 = (a)2 + 2 × a × 4 + (4)2 = (a + 4)2 [(x + y)2 = x2 + 2xy + y2] (ii) p2 − 10p + 25 = (p)2 − 2 × p × 5 + (5)2 = (p − 5)2 [(a − b)2 = a2 − 2ab + b2] (iii) 25m2 + 30m + 9 = (5m)2 + 2 × 5m × 3 + (3)2 = (5m + 3)2 [(a + b)2 = a2 + 2ab + b2 ] |
|
| 220. |
Factorize the following expressions.(i) y2 + 2y – 48(ii) d2 – 4d – 45(iii) m2 + 16m + 63(iv) n2 – 19n – 92(v) p2 – 10p + 16(vi) x2 + 4x – 45 |
|
Answer» (i) y2 + 2y – 48 y2 + 2y – 48 (ii) d2 – 4d – 45 d2 – 4d – 45 (iii) m2 + 16m + 63 m2 + 16m + 63 (iv) n2 – 19n – 92 n2 – 19n – 92 (v) p2 – 10p + 16 p2 – 10p + 16 (vi) x2 + 4x – 45 x2 + 4x – 45 |
|
| 221. |
Factorise the following expressions. (i) `a^2+8x+16` (ii) `p^2-10p+25` (iii) `25m^2+30m+9` (iv) `49y^2+84yz+36z^2` (v) `4x^2-8x+4` (vi) `121b^2-88bc+16c^2` (vii) `(l+m)^2-4lm` (Hint : Expand `(l+m)^2}` first (viii) `a^4+2a^2 b^2 +b^4` |
|
Answer» (i)`a^2 + 8a + 16` `a^2 + 2(4a) + (4)^2` `= (a+4)^2` (ii) `p^2 -10p +25` `p^2 - 5p-5p +25` `= p(p-5)-5(p-5)` `= (p-5)^2` (iii)` 25m^2 + 30m + 9` `= (5m)^2 + 2(5m)3 + (3)^2` `= (5m+ 3)^2` (iv) `49y^2 + 84yz + 36z^2` `= (7y)^2 + 2(6)(7)yz + (6z)^2` `= (7y+6z)^2` (v) `4x^2 - 8x + 4` `(2x)^2 - 2(2)(2)x + (2)^2` `= (2x+2)^2` (vi) `121b^2 - 88bc + 16c^2` `(11b)^2 - 2(11)(4)bc + (4c)^2` `= (11b - 4c)^2` (vii) `(l+m)^2 - 4lm` `=l^2 + m^2 + 2lm - 4lm` `= (l)^2 + (m)^2 - 2lm` `= (l-m)^2` (viii) `a^4 + 2a^2b^2 + b^4` `(a^2)^2 + 2(a^2)(b^2) + (b^2)^2` `(a^2 + b^2)^2` answer |
|
| 222. |
Factorise: 9a2b2 – 25 |
|
Answer» 9a2b2 – 25 can be written as (3ab)2 – (5)2 By using the formula a2 – b2 = (a+b) (a-b) Now solving for the above equation (3ab)2 – (5)2 = (3ab+5) (3ab-5) |
|
| 223. |
Evaluate : (4.5)2 – (1.5)2 |
|
Answer» (4.5)2 – (1.5)2 = (4.5 + 1.5) (4.5 - 1.5) = 6 x 3 = 18 |
|
| 224. |
Factorise:a2 + 5a + 6 |
|
Answer» a2 + 3a + 2a + 6 a(a + 3) + 2(a + 3) (a + 3)(a + 2) |
|
| 225. |
Factorise : a2 + 5a + 6 |
|
Answer» a2 + 5a + 6 = a2 + 3a + 2a + 6 = a(a+3) + 2(a+3) = (a+3) (a+2) |
|
| 226. |
Factorise : 2a2 + 7a + 6 |
|
Answer» 2a2 + 7a + 6 = 2a2 + 4a + 3a + 6 = 2a(a+2) + 3(a+2) = (a+2) (2a+3) |
|
| 227. |
Factorise : 3a2 - 5a + 2 |
|
Answer» 3a2 - 5a + 2 = 3a2 - 3a - 2a + 2 = 3a(a-1) -2(a-1) = (a – 1)(3a – 2) |
|
| 228. |
Factorise : x2 - 10xy + 24y2 |
|
Answer» x2 - 10xy + 24y2 = x2 - 6xy - 4xy + 24y2 = x(x-6y) - 4y(x-6y) = (x-6y) (x-4y) |
|
| 229. |
Factorise :2x2 – 24x + 72 |
|
Answer» 2x2 – 24x + 72 = 2(x2 – 12x + 36) Identity a2 – 2ab + b2 = (a – b)2 = 2(x2 – (2)(x)(6) + 62) = 2(x - 6)2 |
|
| 230. |
Factorise : x2 - x - 72 |
|
Answer» x2 - x - 72 = x2 - 9x + 8x - 72 = x(x-9) + 8(x-9) = (x-9) (x+8) |
|
| 231. |
Factorise : ab2 - (a-c) b - c |
|
Answer» ab2 - (a-c) b - c ab2 - ab + bc - c = ab (b - 1) + c(b - 1) = (b - 1) (ab + c) |
|
| 232. |
Factorise : a(b-c) - d(c-b) |
|
Answer» a(b-c) - d(c-b) = a(b-c) + d(b-c) = (b-c) (a+d) |
|
| 233. |
Factorise : x2 - (b-2)x - 2b |
|
Answer» x2 - (b-2)x - 2b x2 - bx + 2x - 2b = x(x-b) + 2(x-b) = (x-b) (x+2) |
|
| 234. |
Factorise the following expressions.(i) a² + 8a + 16(ii) p² – 10 p + 25(iii) 25m² + 30m + 9(iv) 49y² + 84yz + 36z²(v) 4x² – 8x + 4(vi) 121b² – 88bc + 16c²(vii) (l + m)² – 4lm(viii) a4 + 2a²b² + b4 |
|
Answer» (i) a² + 8a + 16 Answer: This equation can be facorised by using the identity; (a + b)2 = a2 + 2ab + b2 (ii) p² – 10 p + 25 Answer: This equation can be factorised by using the identity; (a – b)2 = a2 – 2ab + b2 (iii) 25m² + 30m + 9 Answer: = (5m – 3)2 (iv) 49y² + 84yz + 36z² Answer: (7y + 6z)2 (v) 4x² – 8x + 4 Answer: (2x – 2)2 (vi) 121b² – 88bc + 16c² Answer: (11b – 4c)2 (vii) (l + m)² – 4lm Answer: l2 + m2 + 2lm - 4lm (viii) a4 + 2a²b² + b4 Answer: This can be solved using (a+b)² = a²+ 2ab + b² |
|