Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Factorise : 2ab2 - aby + 2cby - cy2 

Answer»

2ab2 - aby + 2cby - cy2 

= 2b (ab + cy) - y(ab + cy)

= (ab + cy) (2b - y)

152.

Factorise: 4x2 – 9y2

Answer»

4x2 – 9y2 can be written as (2x)2 – (3y)2

By using the formula a2 – b2 = (a+b) (a-b)

Now solving for the above equation

(2x)2 – (3y)2 = (2x+3y) (2x-3y)

153.

x4 – 1 ÷ x – 3 = …………….. A) x3 – 1 B) x + 1C) (x – 2)2 D) None

Answer»

Correct option is  D) None

Correct option is (D) None

\(\frac{x^4-1}{x-3}=\frac{(x^2-1)(x^2+1)}{x-3}\)

\(=\frac{(x-1)(x+1)(x^2+1)}{x-3}\)

154.

18 a2 b2 c2 ÷ (- 6 abc) = ……………. A) – 3ab B) \(\frac{-ab}{c}\)C) abc2 D) ab

Answer»

Correct option is  A) – 3ab

Correct option is (A) –3ab

\(18\,a^2b^2c\div(-6\,abc)=\frac{18\,a^2b^2c}{-6\,abc}\)

\(=\frac{6abc\times3ab}{-6\,abc}\)

= -3ab

155.

(9x2 – 12x – 12) ÷ (3x + 2) = …………….. A) 3x + 1 B) 3x – 6 C) 6x – 1 D) 6x – 3

Answer»

Correct option is  B) 3x – 6

Correct option is (B) 3x – 6

\((9x^2–12x–12)\div(3x+2)=\frac{9x^2–12x–12}{3x+2}\)

\(=\frac{3(3x^2-4x-4)}{3x+2}\)

\(=\frac{3(3x^2-6x+2x-4)}{3x+2}\)

\(=\frac{3(3x(x-2)+2(x-2))}{3x+2}\)

\(=\frac{3(3x+2)(x-2)}{3x+2}\)

= 3 (x - 2)

= 3x – 6

156.

The degree of a polynomial is 6 and the degree of other polynomial is 2 then the degree of the sum of the both polynomials is ………………. A) 2 B) 4C) 8 D) 6

Answer»

Correct option is  D) 6

157.

Factorise : x2 - (a-3)x-3a

Answer»

x2 - (a-3)x-3a

x2 - ax + 3x - 3a

= x(x-a) + 3(x-a)

= (x-a) (x+3)

158.

Factorise : 2x3b2 - ax5b4 

Answer»

2x3b2 - ax5b4 = 2x3b2 (1 - 2x2b2)

159.

Find the values of ‘m’ for which x2 + 3xy + x + my – m has two linear factors in x and y, with integer coefficients.

Answer»

Given equation is x2 + 3xy + x + my – m ……….(1)

Let the two linear equations in x and y be (x + 3y + a) and (x + 0y + b).

Then (x + 3y + a) (x + 0y + b)

= x2 + 0xy + bx + 3xy + 0y2 + 3by + ax + 0y + ab

= x2 + bx + ax + 3xy + 3by + ab ………….. (2)

Comparing equation (2) with (1),

x2 + 3xy + x + my – m = x2 + (a + b)x + 3xy + 3by + ab

Equating the like terms on both sides,

ab = – m ………….. (3)

(a + b)x = x 

⇒ a + b = 1…………. (4)

3by = my ⇒ 3b = m ⇒ b = m/3

Substitute ‘b’ value in equation (4),

a = 1−m/3 = (3 − m)/3

ab = -m

[ ∵ from (3)]

put a & b value then ,

((3−m)/3)(m/3) = -m

(3m − m2)/9 = -m

⇒ 3m – m2 = – 9m

⇒ m2 – 12m = 0

⇒ m(m – 12) = 0

⇒ m = 0 (or) m = 12

lf m = 12

∴ b = 12/3 = 4&a = (3−m)/3 = (3−12)/3

= −9/3 = -3

∴ Linear factors are (x + 3y – 3), (x + 4)  If m = 0

b = 0/3 = 0 & a = (3−0)/3 = 3/3 = 1

∴ Linear factors are (x + 3y + 1), x.

160.

Identify true statement from following: A) 3 (x – 1) = 7 B) 3 (x – 4) = 3x – 3C) (x – 1)2 = 9 D) x2 – 3xy

Answer»

B) 3 (x – 4) = 3x – 3

161.

25 × 3 = ……………A) 90 B) 31 C) 96 C) 69

Answer»

Correct option is  C) 96

Correct option is (C) 96

\(2^5\times3=32\times3\) = 96

162.

(4x + 51y + 1) (4x + 51y – 1) ……………. A) (4x – 5y)2 B) (4x – 5)2 C) (3x – y)2 D) None

Answer»

Correct option is  D) None

Correct option is (D) None

(4x + 51y + 1) (4x + 51y – 1) \(=(4x+51y)^2-1^2\)

\(=(4x+51y)^2-1\)

163.

3 + 2 (9) = ………… A) 11 B) 21 C) 16 D) 19

Answer»

Correct option is  B) 21

Correct option is (B) 21

3 + 2 (9) = 3+18 = 21

164.

24 × 3 = …………..A) 481 B) 48 C) 78 D) 92

Answer»

Correct option is  B) 48

Correct option is (B) 48

\(2^4\times3=16\times3\)

= 48

165.

\(\frac{x-y}{\sqrt{x}-\sqrt{y}}\) = .......................A) √x + √y B) √x – y C) x – √y D) 1 – y

Answer»

Correct option is  A) √x + √y

Correct option is (A) √x + √y

\(\frac{x-y}{\sqrt x-\sqrt y}=\frac{(\sqrt x+\sqrt y)(\sqrt x-\sqrt y)}{\sqrt x-\sqrt y}\)

\(\sqrt x+\sqrt y\)

166.

Factorise the following expression : 36x2 + 96xy + 64y2

Answer»

36x2 + 96xy + 64y2

36x2 + 96xy + 64y2

= (6x)2 + 2 × 6x × 8y + (8y)2

It is in the form of a2 + 2ab + b2

a2 + 2ab + b2 = (a + b)2

∴ 36x2 + 96xy + 64y2

= (6x + 8y)2 = (6x + 8y) (6x + 8y)

167.

Find and correct the errors in the statement: (3x + 2)2 = 3x2 + 6x + 4

Answer»

L.H.S. = (3x + 2)

= (3x)2 + 2(3x)(2) + (2)2 [(a + b)2 = a2 + 2ab + b2

= 9x2 + 12x + 4 ≠ R.H.S

The correct statement is (3x + 2)2 = 9x2 + 12x + 4

168.

14x2 ÷ 42x2 = ……………. A) 3/xB) 1/xC) 3/xD) x/3

Answer»

Correct option is  D) x/3 

Correct option is (D) x/3

\(14x^3\div42x^2=\frac{14x^3}{42x^2}\)

\(\frac x3\)

169.

Find and correct the errors in the statement: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7

Answer»

L.H.S = (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7 ≠ R.H.S

The correct statement is (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7

170.

Find and correct the errors in the statement: (a − 4) (a − 2) = a2 − 8

Answer»

L.H.S. = (a − 4) (a − 2) = (a)2 + [(− 4) + (− 2)] (a) + (− 4) (− 2)

= a2 − 6a + 8 ≠ R.H.S.

The correct statement is (a − 4) (a − 2) = a2 − 6a + 8

171.

Factorise : 14x2 + 7x - 6x - 3

Answer»

14x2 + 7x - 6x - 3

7x(2x+1) -3(2x+1)

= (2x+1) (7x-3)

172.

Find and correct the errors in the statement: (2x)2 + 5x = 4x + 5x = 9x

Answer»

L.H.S = (2x)2 + 5x = 4x2 + 5x ≠ R.H.S.

The correct statement is (2x)2 + 5x = 4x2 + 5x

173.

Factorise : `49p^2-36`

Answer» `49p^2 - 36`
`(7p)^2 - (6)^2`
using identity `(a+b)(a-b) = a^2 -b^2`
`= (7p-6)(7p+6)`
answer
174.

Factorise : `10x^2 - 18x^3 + 14x^4`

Answer» `10x^2 - 18x^3 + 14x^4`
`10x^2 = 2*5*x*x`
`18x^3 = 2*3*3*x*x*x`
`14x^4 = 2*7*x*x*x*x`
`=> 10x^2 - 18x^3 + 14x^4 `
`= 2*5*x*x - 2*3*3*x*x*x + 2*7*x*x*x*x`
`= 2*x*x[ 5 - 3*3*x + 7*x*x]`
`= 2x^2 [5-9x+7x^2]`
answer
175.

Find and correct the errors in the statement: x + 2x + 3x = 5x

Answer»

L.H.S = x + 2x + 3x =1x + 2x + 3x = x(1 + 2 + 3) 

= 6x ≠ R.H.S.

The correct statement is x + 2x + 3x = 6x

176.

Find and correct the errors in the statement: 2x + 3y = 5xy

Answer» L.H.S = 2x + 3y ≠ R.H.S.

The correct statement is 2x + 3y = 2x + 3y
177.

Factorise : `6xy-4y+6-9x.`

Answer» `6xy - 4y + 6 - 9x`
`=2y( 3x-2) + 3(2-3x) `
`= 2y[3x-2]+3[-3x+2]`
`= 2y[3x-2] - 3[3x-2]`
`= [3x-2][2y-3]`
answer
178.

Factorise : x2 + 5xy + 4y2

Answer»

x2 + 5xy + ay2 = x2 + 4xy + xy + 4y2 

= x(x+4y) + y(x+4y)

= (x+4y) (x+y)

179.

Factorise: 16x5 -144x3

Answer»

16x5 -144x3 can be written as 16x3(x2 – 9)

By using the formula a2 – b2 = (a+b) (a-b)

Now solving for the above equation

16x3(x2 – 9) 

= 16x3((x) 2 – (3)2)

= 16x3(x+3) (x-3)

180.

Factorise(i) 16x5 − 144x3(ii) (l + m)2 − (l − m)2(iii) 9x2y2 − 16

Answer»

(i) 16x5 − 144x3 

= 16x3(x2 − 9)

= 16 x3 [(x)2 − (3)2]

= 16 x3(x − 3) (x + 3)  [a2 − b2 = (a − b) (a + b)]

(ii) (l + m)2 − (l − m)

= [(l + m) − (l − m)] [(l + m) + (l − m)] 

[Using identity a2 − b2 = (a − b) (a + b)]

= (l + m − l + m) (l + m + l − m)

= 2m × 2l

= 4ml

= 4lm

(iii) 9x2y2 − 16 = (3xy)2 − (4)2

= (3xy − 4) (3xy + 4) [a2 − b2 = (a − b) (a + b)]

181.

Solve the question:(i) ax2 + bx(ii) 7p2 + 21q2(iii) 2x3 + 2xy2 + 2xz2

Answer»

(i) ax2 + bx 

= a × x × x + b × x 

= x(ax + b)

(ii) 7p2 + 21q

= 7 × p × p + 3 × 7 × q × q 

= 7(p2 + 3q2)

(iii) 2x3 + 2xy2 + 2xz2 

= 2x(x2 + y2 + z2)

182.

Factorize the quadratic polynomials by using the method of completing the square:4y2 + 12y + 5

Answer»

We have,

4y2 + 12y + 5

4(y2 + 3y + 5/4)

Coefficient of y2 is unity. So, we add and subtract square of half of coefficient of y.

4(y2 + 3y + 5/4) = 4 [y2 + 3y + (3/2)2 – (3/2)2 + 5/4] (Adding and subtracting (3/2)2)

= 4 [(y + 3/2)2 – 12] (Completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= 4 (y + 3/2 + 1) (y + 3/2 – 1)

= 4 (y + 1/2) (y + 5/2) (by taking LCM)

= 4 [(2y + 1)/2] [(2y + 5)/2]

= (2y + 1) (2y + 5)

183.

Factorize the quadratic polynomials by using the method of completing the square:4x2 – 12x + 5

Answer»

We have,

4x2 – 12x + 5

4(x2 – 3x + 5/4)

Coefficient of x2 is unity. So, we add and subtract square of half of coefficient of x.

4(x2 – 3x + 5/4) = 4 [x2 – 3x + (3/2)2 – (3/2)2 + 5/4] (Adding and subtracting (3/2)2)

= 4 [(x – 3/2)2 – 12] (Completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= 4 (x – 3/2 + 1) (x – 3/2 – 1)

= 4 (x – 1/2) (x – 5/2) (by taking LCM)

= 4 [(2x-1)/2] [(2x – 5)/2]

= (2x – 5) (2x – 1)

184.

Factorize the quadratic polynomials by using the method of completing the square:a2 + 2a – 3

Answer»

We have,

a2 + 2a – 3

Coefficient of a2 is unity. So, we add and subtract square of half of coefficient of a.

a2 + 2a – 3 = a2 + 2a + 12 – 12 – 3 (Adding and subtracting 12)

= (a + 1)2 – 22 (Completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= (a + 1 + 2) (a + 1 – 2)

= (a + 3) (a – 1)

185.

Factorise : 5 + 3a - 14a2 

Answer»

5 + 3a - 14a2 = 5 + 10a - 7a - 14a2 

= 5(1 + 2a) -7a(1 + 2a)

= (1 + 2a) (5 - 7a)

186.

Factorize the quadratic polynomials by using the method of completing the square:z2 – 4z – 12

Answer»

We have,

z2 – 4z – 12

Coefficient of z2 is unity. So, we add and subtract square of half of coefficient of z.

z2 – 4z – 12 = z2 – 4z + 22 – 22 – 12 [Adding and subtracting 22]

= (z – 2)2 – 42 (Completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= (z – 2 + 4) (z – 2 – 4)

= (z – 6) (z + 2)

187.

Factorize the quadratic polynomials by using the method of completing the square:y2 – 7y + 12

Answer»

We have,

y2 – 7y + 12

Coefficient of y2 is unity. So, we add and subtract square of half of coefficient of y.

y2 – 7y + 12 = y2 – 7y + (7/2)2 – (7/2)2 + 12 [Adding and subtracting (7/2)2]

= (y – 7/2)2 – (7/2)2 (Completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= (y – (7/2- 1/2)) (y – (7/2 + 1/2))

= (y – 3) (y – 4)

188.

Factorize the quadratic polynomials by using the method of completing the square:q2 – 10q + 21

Answer»

We have,

q2 – 10q + 21

Coefficient of q2 is unity. So, we add and subtract square of half of coefficient of q.

q2 – 10q + 21 = q2 – 10q+ 52 – 52 + 21 (Adding and subtracting 52)

= (q – 5)2 – 22 (By completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= (q – 5 – 2) (q – 5 + 2)

= (q – 3) (q – 7)

189.

Factorise:7lm – 21lmn

Answer»

7lm – 21lmn 

= 7 × l × m7 × 3 × m × n × l 

= 7 × l × m [1 – 3n] 

= 7lm [1 – 3n]

190.

Resolve the quadratic trinomials into factors:36a2 + 12abc – 15b2c2

Answer»

We have,

36a2 + 12abc – 15b2c2

The coefficient of a2 is 36

The coefficient of a is 12bc

Constant term is -15b2c2

So, we express the middle term 12abc as 30abc – 18abc

36a2 –12abc– 15b2c2 = 36a2 + 30abc – 18abc – 15b2c2

= 6a (6a + 5bc) – 3bc (6a + 5bc)

= (6a + 5bc) (6a – 3bc)

= (6a + 5bc) 3(2a – bc)

191.

Factorise: 15a3b – 35ab3

Answer»

15a3b – 35ab3

= 3 × 5 × a × a × a × b – 7 × 5 × a × b × b × b 

= 5 × a × b [3 × a × a – 7 × b × b] 

= 5ab [3a2 – 7b2]

192.

25a2b + 35ab2 = ……………… A) 5ab (5a+ 7b) B) 5ab (a – 2b) C) 5ab (a – b) D) 5a2 b2 (a – b)

Answer»

A) 5ab (5a+ 7b)

Correct option is (A) 5ab (5a + 7b)

\(25a^2b+35ab^2\) \(=5ab\times5a+5ab\times7b\)

= 5ab (5a + 7b)

193.

Factorize the quadratic polynomials by using the method of completing the square:p2 + 6p + 8

Answer»

We have,

p2 + 6p + 8

Coefficient of p2 is unity. So, we add and subtract square of half of coefficient of p.

p2 + 6p + 8 = p2 + 6p + 32 – 32 + 8 (Adding and subtracting 32)

= (p + 3)2 – 12 (By completing the square)

By using the formula (a2 – b2) = (a+b) (a-b)

= (p + 3 – 1) (p + 3 + 1)

= (p + 2) (p + 4)

194.

Factorise the following expressions. (i) `7x - 42` (ii) `6p - 12q` (iii) `7a^2 + 14a` (iv) `-16z + 20z^3` (v) `20l^2m + 30a l m` (vi) `5x^2y - 15xy^2` (vii) `10a^2 - 15b^2 + 20c^2` (viii) `-4a2 + 4ab - 4ca` (ix) `x^2yz + xy^2z + xyz^2` (x) `ax^2y + bxy^2 + cxyz`

Answer» 1)`7x-42=7(x-6)`
2)`6p-12q=6(p-2q)`
3)`7a^2+14a=7a(a+2)`
4)`-16z+20z^2=4z(5z-4)`
5)`20l^2m+30alm=10lm(2l+3a)`
6)`5x^2y-15xy^2=5xy(x-3y)`
7)`10a^2-15b^2+20c^2=5(2a^2-3b^2+4c^2)`
8)`-4a^2+4ab-4ca=4a(-a+b-c)`
9)`x^2yz+xy^2z+xyz^2=xyz(x+y+z)`
10)`ax^2y+bxy^2+cxyz=xy(ax+by+cz)`.
195.

Factorise: x2 + 15x + 56

Answer»

First find the two numbers whose sum=15 and product=56

Clearly, the numbers are 7 and 8

∴ we get, x2 +15x + 56 

= x+ 7x +8x + 56

= x(x+7) + 8(x+7)

= (x+7) (x+8)

196.

Factorise: 2a +6b -3(a+3b)2

Answer»

2(a+3b) – 3(a+3b) 2

Now by taking (a+3b) as a common factor for the above equation we get,

2(a+3b) – 3(a+3b)

= (a+3b) (2 – 3(a+3b))

= (a+3b) (2- 3a -9b)

197.

Factorise: p2 + 6p - 16

Answer»

First find the two numbers whose sum=6 and product= -16

Clearly, the numbers are 8 and 2

∴ we get, p2 +6p – 16 

= p+8p – 2p -16

= p (p+8) – 2(p+8)

= (p+8) (p-2)

198.

Common factors of 6xy, 9y2 A) 3, y B) 6, y2 C) 3, y2 D) 3, x, y

Answer»

Correct option is  A) 3, y

Correct option is (A) 3, y

Common factor of 9 & 6 is 3.

\(\therefore\) Common factors of 6xy & \(9y^2\) are 3 & y.

199.

Factorise : ax + ay + bx + by A) (x + a) (y + b) B) (x + y) (a + b) C) (x + b) (y + a) D) (xy + ab)

Answer»

B) (x + y) (a + b)

Correct option is (B) (x + y) (a + b)

ax + ay + bx + by \(=a(x+y)+b(x+y)\)

= (a + b) (x + y)

200.

Factorise: 36a2 + 36a + 9

Answer»

We solve by using the formula (a+b)2 = a2 + b2 + 2ab We get, 

(6a)2 + (3)2 + 2 (6a) (3) = (6a+3) 2