InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
Factorise : 2ab2 - aby + 2cby - cy2 |
|
Answer» 2ab2 - aby + 2cby - cy2 = 2b (ab + cy) - y(ab + cy) = (ab + cy) (2b - y) |
|
| 152. |
Factorise: 4x2 – 9y2 |
|
Answer» 4x2 – 9y2 can be written as (2x)2 – (3y)2 By using the formula a2 – b2 = (a+b) (a-b) Now solving for the above equation (2x)2 – (3y)2 = (2x+3y) (2x-3y) |
|
| 153. |
x4 – 1 ÷ x – 3 = …………….. A) x3 – 1 B) x + 1C) (x – 2)2 D) None |
|
Answer» Correct option is D) None Correct option is (D) None \(\frac{x^4-1}{x-3}=\frac{(x^2-1)(x^2+1)}{x-3}\) \(=\frac{(x-1)(x+1)(x^2+1)}{x-3}\) |
|
| 154. |
18 a2 b2 c2 ÷ (- 6 abc) = ……………. A) – 3ab B) \(\frac{-ab}{c}\)C) abc2 D) ab |
|
Answer» Correct option is A) – 3ab Correct option is (A) –3ab \(18\,a^2b^2c\div(-6\,abc)=\frac{18\,a^2b^2c}{-6\,abc}\) \(=\frac{6abc\times3ab}{-6\,abc}\) = -3ab |
|
| 155. |
(9x2 – 12x – 12) ÷ (3x + 2) = …………….. A) 3x + 1 B) 3x – 6 C) 6x – 1 D) 6x – 3 |
|
Answer» Correct option is B) 3x – 6 Correct option is (B) 3x – 6 \((9x^2–12x–12)\div(3x+2)=\frac{9x^2–12x–12}{3x+2}\) \(=\frac{3(3x^2-4x-4)}{3x+2}\) \(=\frac{3(3x^2-6x+2x-4)}{3x+2}\) \(=\frac{3(3x(x-2)+2(x-2))}{3x+2}\) \(=\frac{3(3x+2)(x-2)}{3x+2}\) = 3 (x - 2) = 3x – 6 |
|
| 156. |
The degree of a polynomial is 6 and the degree of other polynomial is 2 then the degree of the sum of the both polynomials is ………………. A) 2 B) 4C) 8 D) 6 |
|
Answer» Correct option is D) 6 |
|
| 157. |
Factorise : x2 - (a-3)x-3a |
|
Answer» x2 - (a-3)x-3a x2 - ax + 3x - 3a = x(x-a) + 3(x-a) = (x-a) (x+3) |
|
| 158. |
Factorise : 2x3b2 - ax5b4 |
|
Answer» 2x3b2 - ax5b4 = 2x3b2 (1 - 2x2b2) |
|
| 159. |
Find the values of ‘m’ for which x2 + 3xy + x + my – m has two linear factors in x and y, with integer coefficients. |
|
Answer» Given equation is x2 + 3xy + x + my – m ……….(1) Let the two linear equations in x and y be (x + 3y + a) and (x + 0y + b). Then (x + 3y + a) (x + 0y + b) = x2 + 0xy + bx + 3xy + 0y2 + 3by + ax + 0y + ab = x2 + bx + ax + 3xy + 3by + ab ………….. (2) Comparing equation (2) with (1), x2 + 3xy + x + my – m = x2 + (a + b)x + 3xy + 3by + ab Equating the like terms on both sides, ab = – m ………….. (3) (a + b)x = x ⇒ a + b = 1…………. (4) 3by = my ⇒ 3b = m ⇒ b = m/3 Substitute ‘b’ value in equation (4), a = 1−m/3 = (3 − m)/3 ab = -m [ ∵ from (3)] put a & b value then , ((3−m)/3)(m/3) = -m (3m − m2)/9 = -m ⇒ 3m – m2 = – 9m ⇒ m2 – 12m = 0 ⇒ m(m – 12) = 0 ⇒ m = 0 (or) m = 12 lf m = 12 ∴ b = 12/3 = 4&a = (3−m)/3 = (3−12)/3 = −9/3 = -3 ∴ Linear factors are (x + 3y – 3), (x + 4) If m = 0 b = 0/3 = 0 & a = (3−0)/3 = 3/3 = 1 ∴ Linear factors are (x + 3y + 1), x. |
|
| 160. |
Identify true statement from following: A) 3 (x – 1) = 7 B) 3 (x – 4) = 3x – 3C) (x – 1)2 = 9 D) x2 – 3xy |
|
Answer» B) 3 (x – 4) = 3x – 3 |
|
| 161. |
25 × 3 = ……………A) 90 B) 31 C) 96 C) 69 |
|
Answer» Correct option is C) 96 Correct option is (C) 96 \(2^5\times3=32\times3\) = 96 |
|
| 162. |
(4x + 51y + 1) (4x + 51y – 1) ……………. A) (4x – 5y)2 B) (4x – 5)2 C) (3x – y)2 D) None |
|
Answer» Correct option is D) None Correct option is (D) None (4x + 51y + 1) (4x + 51y – 1) \(=(4x+51y)^2-1^2\) \(=(4x+51y)^2-1\) |
|
| 163. |
3 + 2 (9) = ………… A) 11 B) 21 C) 16 D) 19 |
|
Answer» Correct option is B) 21 Correct option is (B) 21 3 + 2 (9) = 3+18 = 21 |
|
| 164. |
24 × 3 = …………..A) 481 B) 48 C) 78 D) 92 |
|
Answer» Correct option is B) 48 Correct option is (B) 48 \(2^4\times3=16\times3\) = 48 |
|
| 165. |
\(\frac{x-y}{\sqrt{x}-\sqrt{y}}\) = .......................A) √x + √y B) √x – y C) x – √y D) 1 – y |
|
Answer» Correct option is A) √x + √y Correct option is (A) √x + √y \(\frac{x-y}{\sqrt x-\sqrt y}=\frac{(\sqrt x+\sqrt y)(\sqrt x-\sqrt y)}{\sqrt x-\sqrt y}\) = \(\sqrt x+\sqrt y\) |
|
| 166. |
Factorise the following expression : 36x2 + 96xy + 64y2 |
|
Answer» 36x2 + 96xy + 64y2 36x2 + 96xy + 64y2 = (6x)2 + 2 × 6x × 8y + (8y)2 It is in the form of a2 + 2ab + b2 a2 + 2ab + b2 = (a + b)2 ∴ 36x2 + 96xy + 64y2 = (6x + 8y)2 = (6x + 8y) (6x + 8y) |
|
| 167. |
Find and correct the errors in the statement: (3x + 2)2 = 3x2 + 6x + 4 |
|
Answer» L.H.S. = (3x + 2)2 = (3x)2 + 2(3x)(2) + (2)2 [(a + b)2 = a2 + 2ab + b2] = 9x2 + 12x + 4 ≠ R.H.S The correct statement is (3x + 2)2 = 9x2 + 12x + 4 |
|
| 168. |
14x2 ÷ 42x2 = ……………. A) 3/xB) 1/xC) 3/xD) x/3 |
|
Answer» Correct option is D) x/3 Correct option is (D) x/3 \(14x^3\div42x^2=\frac{14x^3}{42x^2}\) = \(\frac x3\) |
|
| 169. |
Find and correct the errors in the statement: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7 |
|
Answer» L.H.S = (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7 ≠ R.H.S The correct statement is (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7 |
|
| 170. |
Find and correct the errors in the statement: (a − 4) (a − 2) = a2 − 8 |
|
Answer» L.H.S. = (a − 4) (a − 2) = (a)2 + [(− 4) + (− 2)] (a) + (− 4) (− 2) = a2 − 6a + 8 ≠ R.H.S. The correct statement is (a − 4) (a − 2) = a2 − 6a + 8 |
|
| 171. |
Factorise : 14x2 + 7x - 6x - 3 |
|
Answer» 14x2 + 7x - 6x - 3 7x(2x+1) -3(2x+1) = (2x+1) (7x-3) |
|
| 172. |
Find and correct the errors in the statement: (2x)2 + 5x = 4x + 5x = 9x |
|
Answer» L.H.S = (2x)2 + 5x = 4x2 + 5x ≠ R.H.S. The correct statement is (2x)2 + 5x = 4x2 + 5x |
|
| 173. |
Factorise : `49p^2-36` |
|
Answer» `49p^2 - 36` `(7p)^2 - (6)^2` using identity `(a+b)(a-b) = a^2 -b^2` `= (7p-6)(7p+6)` answer |
|
| 174. |
Factorise : `10x^2 - 18x^3 + 14x^4` |
|
Answer» `10x^2 - 18x^3 + 14x^4` `10x^2 = 2*5*x*x` `18x^3 = 2*3*3*x*x*x` `14x^4 = 2*7*x*x*x*x` `=> 10x^2 - 18x^3 + 14x^4 ` `= 2*5*x*x - 2*3*3*x*x*x + 2*7*x*x*x*x` `= 2*x*x[ 5 - 3*3*x + 7*x*x]` `= 2x^2 [5-9x+7x^2]` answer |
|
| 175. |
Find and correct the errors in the statement: x + 2x + 3x = 5x |
|
Answer» L.H.S = x + 2x + 3x =1x + 2x + 3x = x(1 + 2 + 3) = 6x ≠ R.H.S. The correct statement is x + 2x + 3x = 6x |
|
| 176. |
Find and correct the errors in the statement: 2x + 3y = 5xy |
|
Answer» L.H.S = 2x + 3y ≠ R.H.S. The correct statement is 2x + 3y = 2x + 3y |
|
| 177. |
Factorise : `6xy-4y+6-9x.` |
|
Answer» `6xy - 4y + 6 - 9x` `=2y( 3x-2) + 3(2-3x) ` `= 2y[3x-2]+3[-3x+2]` `= 2y[3x-2] - 3[3x-2]` `= [3x-2][2y-3]` answer |
|
| 178. |
Factorise : x2 + 5xy + 4y2 |
|
Answer» x2 + 5xy + ay2 = x2 + 4xy + xy + 4y2 = x(x+4y) + y(x+4y) = (x+4y) (x+y) |
|
| 179. |
Factorise: 16x5 -144x3 |
|
Answer» 16x5 -144x3 can be written as 16x3(x2 – 9) By using the formula a2 – b2 = (a+b) (a-b) Now solving for the above equation 16x3(x2 – 9) = 16x3((x) 2 – (3)2) = 16x3(x+3) (x-3) |
|
| 180. |
Factorise(i) 16x5 − 144x3(ii) (l + m)2 − (l − m)2(iii) 9x2y2 − 16 |
|
Answer» (i) 16x5 − 144x3 = 16x3(x2 − 9) = 16 x3 [(x)2 − (3)2] = 16 x3(x − 3) (x + 3) [a2 − b2 = (a − b) (a + b)] (ii) (l + m)2 − (l − m)2 = [(l + m) − (l − m)] [(l + m) + (l − m)] [Using identity a2 − b2 = (a − b) (a + b)] = (l + m − l + m) (l + m + l − m) = 2m × 2l = 4ml = 4lm (iii) 9x2y2 − 16 = (3xy)2 − (4)2 = (3xy − 4) (3xy + 4) [a2 − b2 = (a − b) (a + b)] |
|
| 181. |
Solve the question:(i) ax2 + bx(ii) 7p2 + 21q2(iii) 2x3 + 2xy2 + 2xz2 |
|
Answer» (i) ax2 + bx = a × x × x + b × x = x(ax + b) (ii) 7p2 + 21q2 = 7 × p × p + 3 × 7 × q × q = 7(p2 + 3q2) (iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2) |
|
| 182. |
Factorize the quadratic polynomials by using the method of completing the square:4y2 + 12y + 5 |
|
Answer» We have, 4y2 + 12y + 5 4(y2 + 3y + 5/4) Coefficient of y2 is unity. So, we add and subtract square of half of coefficient of y. 4(y2 + 3y + 5/4) = 4 [y2 + 3y + (3/2)2 – (3/2)2 + 5/4] (Adding and subtracting (3/2)2) = 4 [(y + 3/2)2 – 12] (Completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = 4 (y + 3/2 + 1) (y + 3/2 – 1) = 4 (y + 1/2) (y + 5/2) (by taking LCM) = 4 [(2y + 1)/2] [(2y + 5)/2] = (2y + 1) (2y + 5) |
|
| 183. |
Factorize the quadratic polynomials by using the method of completing the square:4x2 – 12x + 5 |
|
Answer» We have, 4x2 – 12x + 5 4(x2 – 3x + 5/4) Coefficient of x2 is unity. So, we add and subtract square of half of coefficient of x. 4(x2 – 3x + 5/4) = 4 [x2 – 3x + (3/2)2 – (3/2)2 + 5/4] (Adding and subtracting (3/2)2) = 4 [(x – 3/2)2 – 12] (Completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = 4 (x – 3/2 + 1) (x – 3/2 – 1) = 4 (x – 1/2) (x – 5/2) (by taking LCM) = 4 [(2x-1)/2] [(2x – 5)/2] = (2x – 5) (2x – 1) |
|
| 184. |
Factorize the quadratic polynomials by using the method of completing the square:a2 + 2a – 3 |
|
Answer» We have, a2 + 2a – 3 Coefficient of a2 is unity. So, we add and subtract square of half of coefficient of a. a2 + 2a – 3 = a2 + 2a + 12 – 12 – 3 (Adding and subtracting 12) = (a + 1)2 – 22 (Completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = (a + 1 + 2) (a + 1 – 2) = (a + 3) (a – 1) |
|
| 185. |
Factorise : 5 + 3a - 14a2 |
|
Answer» 5 + 3a - 14a2 = 5 + 10a - 7a - 14a2 = 5(1 + 2a) -7a(1 + 2a) = (1 + 2a) (5 - 7a) |
|
| 186. |
Factorize the quadratic polynomials by using the method of completing the square:z2 – 4z – 12 |
|
Answer» We have, z2 – 4z – 12 Coefficient of z2 is unity. So, we add and subtract square of half of coefficient of z. z2 – 4z – 12 = z2 – 4z + 22 – 22 – 12 [Adding and subtracting 22] = (z – 2)2 – 42 (Completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = (z – 2 + 4) (z – 2 – 4) = (z – 6) (z + 2) |
|
| 187. |
Factorize the quadratic polynomials by using the method of completing the square:y2 – 7y + 12 |
|
Answer» We have, y2 – 7y + 12 Coefficient of y2 is unity. So, we add and subtract square of half of coefficient of y. y2 – 7y + 12 = y2 – 7y + (7/2)2 – (7/2)2 + 12 [Adding and subtracting (7/2)2] = (y – 7/2)2 – (7/2)2 (Completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = (y – (7/2- 1/2)) (y – (7/2 + 1/2)) = (y – 3) (y – 4) |
|
| 188. |
Factorize the quadratic polynomials by using the method of completing the square:q2 – 10q + 21 |
|
Answer» We have, q2 – 10q + 21 Coefficient of q2 is unity. So, we add and subtract square of half of coefficient of q. q2 – 10q + 21 = q2 – 10q+ 52 – 52 + 21 (Adding and subtracting 52) = (q – 5)2 – 22 (By completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = (q – 5 – 2) (q – 5 + 2) = (q – 3) (q – 7) |
|
| 189. |
Factorise:7lm – 21lmn |
|
Answer» 7lm – 21lmn = 7 × l × m – 7 × 3 × m × n × l = 7 × l × m [1 – 3n] = 7lm [1 – 3n] |
|
| 190. |
Resolve the quadratic trinomials into factors:36a2 + 12abc – 15b2c2 |
|
Answer» We have, 36a2 + 12abc – 15b2c2 The coefficient of a2 is 36 The coefficient of a is 12bc Constant term is -15b2c2 So, we express the middle term 12abc as 30abc – 18abc 36a2 –12abc– 15b2c2 = 36a2 + 30abc – 18abc – 15b2c2 = 6a (6a + 5bc) – 3bc (6a + 5bc) = (6a + 5bc) (6a – 3bc) = (6a + 5bc) 3(2a – bc) |
|
| 191. |
Factorise: 15a3b – 35ab3 |
|
Answer» 15a3b – 35ab3 = 3 × 5 × a × a × a × b – 7 × 5 × a × b × b × b = 5 × a × b [3 × a × a – 7 × b × b] = 5ab [3a2 – 7b2] |
|
| 192. |
25a2b + 35ab2 = ……………… A) 5ab (5a+ 7b) B) 5ab (a – 2b) C) 5ab (a – b) D) 5a2 b2 (a – b) |
|
Answer» A) 5ab (5a+ 7b) Correct option is (A) 5ab (5a + 7b) \(25a^2b+35ab^2\) \(=5ab\times5a+5ab\times7b\) = 5ab (5a + 7b) |
|
| 193. |
Factorize the quadratic polynomials by using the method of completing the square:p2 + 6p + 8 |
|
Answer» We have, p2 + 6p + 8 Coefficient of p2 is unity. So, we add and subtract square of half of coefficient of p. p2 + 6p + 8 = p2 + 6p + 32 – 32 + 8 (Adding and subtracting 32) = (p + 3)2 – 12 (By completing the square) By using the formula (a2 – b2) = (a+b) (a-b) = (p + 3 – 1) (p + 3 + 1) = (p + 2) (p + 4) |
|
| 194. |
Factorise the following expressions. (i) `7x - 42` (ii) `6p - 12q` (iii) `7a^2 + 14a` (iv) `-16z + 20z^3` (v) `20l^2m + 30a l m` (vi) `5x^2y - 15xy^2` (vii) `10a^2 - 15b^2 + 20c^2` (viii) `-4a2 + 4ab - 4ca` (ix) `x^2yz + xy^2z + xyz^2` (x) `ax^2y + bxy^2 + cxyz` |
|
Answer» 1)`7x-42=7(x-6)` 2)`6p-12q=6(p-2q)` 3)`7a^2+14a=7a(a+2)` 4)`-16z+20z^2=4z(5z-4)` 5)`20l^2m+30alm=10lm(2l+3a)` 6)`5x^2y-15xy^2=5xy(x-3y)` 7)`10a^2-15b^2+20c^2=5(2a^2-3b^2+4c^2)` 8)`-4a^2+4ab-4ca=4a(-a+b-c)` 9)`x^2yz+xy^2z+xyz^2=xyz(x+y+z)` 10)`ax^2y+bxy^2+cxyz=xy(ax+by+cz)`. |
|
| 195. |
Factorise: x2 + 15x + 56 |
|
Answer» First find the two numbers whose sum=15 and product=56 Clearly, the numbers are 7 and 8 ∴ we get, x2 +15x + 56 = x2 + 7x +8x + 56 = x(x+7) + 8(x+7) = (x+7) (x+8) |
|
| 196. |
Factorise: 2a +6b -3(a+3b)2 |
|
Answer» 2(a+3b) – 3(a+3b) 2 Now by taking (a+3b) as a common factor for the above equation we get, 2(a+3b) – 3(a+3b)2 = (a+3b) (2 – 3(a+3b)) = (a+3b) (2- 3a -9b) |
|
| 197. |
Factorise: p2 + 6p - 16 |
|
Answer» First find the two numbers whose sum=6 and product= -16 Clearly, the numbers are 8 and 2 ∴ we get, p2 +6p – 16 = p2 +8p – 2p -16 = p (p+8) – 2(p+8) = (p+8) (p-2) |
|
| 198. |
Common factors of 6xy, 9y2 A) 3, y B) 6, y2 C) 3, y2 D) 3, x, y |
|
Answer» Correct option is A) 3, y Correct option is (A) 3, y Common factor of 9 & 6 is 3. \(\therefore\) Common factors of 6xy & \(9y^2\) are 3 & y. |
|
| 199. |
Factorise : ax + ay + bx + by A) (x + a) (y + b) B) (x + y) (a + b) C) (x + b) (y + a) D) (xy + ab) |
|
Answer» B) (x + y) (a + b) Correct option is (B) (x + y) (a + b) ax + ay + bx + by \(=a(x+y)+b(x+y)\) = (a + b) (x + y) |
|
| 200. |
Factorise: 36a2 + 36a + 9 |
|
Answer» We solve by using the formula (a+b)2 = a2 + b2 + 2ab We get, (6a)2 + (3)2 + 2 (6a) (3) = (6a+3) 2 |
|