 
                 
                InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. | Expansion of (x + 1/x)2 is x2 + 1/x2 + 2. | 
| Answer» True Expansion of (x + 1/x)2 is x2 + 1/x2 + 2. | |
| 102. | Factors of expression x2 + (a + b) x + ab are(a) (x + a)(x – b)(b) (x – a) (x + b)(c) (x + a)(x + b)(d) (x – a) (x – b) | 
| Answer» (c) (x + a)(x + b) | |
| 103. | Factorize 3x3 + 3x2 + x + 1. | 
| Answer» 3x3 + 3x2 + x + 1 = 3x2 (x + 1) + 1 (x + 1) = (x + 1) (3x2 + 1) | |
| 104. | Square of (2x + 3) is(a) 4x2 + 6x + 9(b) 4x2 + 2x + 9(c) 4x2 + 12x + 9(d) 4x2 + 9 | 
| Answer» (c) 4x2 + 12x + 9 | |
| 105. | Factorize the following expressionx2 + 8x + 16 | 
| Answer» x2 + 8x + 16 = x2 + 2 × x + 4 + (4)2 = (x + 4)2 | |
| 106. | Simplify 2x(2x2 + 2x – 9). | 
| Answer» 2x (2x2 + 2x – 9) = 2x × 2x2 + 2x × 2x – 2x × 9 = 4x3 + 4x2 – 18x | |
| 107. | Factor of 4x2 + 8xy + 4y2 is(a) (2x + 2y)2(b) (2x – 2y)2(c) (2x + y)2(d) (x + 2y)2 | 
| Answer» Factor of 4x2 + 8xy + 4y2 is (2x + 2y)2. | |
| 108. | If x + y = 20, xy = 34 then find the value of x2 + y2. | 
| Answer» (x + y)2 = x2 + y2 + 2xy ⇒ (20)2 = x2 + y2 + 2(34) ⇒ 400 = x2 + y2 + 68 ⇒ x2 + y2 = 400 – 68 ⇒ x2 + y2 = 332 | |
| 109. | Square of (6x + 1) is(a) 36x2 + 1(b) 36x2 + 6x + 1(c) 36x2 + 6(d) 36x2 + 12x + 1. | 
| Answer» (d) 36x2 + 12x + 1. | |
| 110. | Find common factor of 2(x + y) + 3(x + y) + 5(x + y) | 
| Answer» Common factor is (x + y) | |
| 111. | The product of expression (2a – 3) (2a + 3) is(a) 4a2 + 2a + 9(b) 4a2 – 9(c) 4a2 – 6(d) 4a2 – 4a + 9 | 
| Answer» The product of expression (2a – 3) (2a + 3) is 4a2 – 9. | |
| 112. | Factor of 2x3 + x2 + 2x + 1 is(a) (2x + 1)(x2 + 1)(b) (x2 + 2)(x + 1)(c) (x + 2)(x2 + 1)(d) (x2 + 1)(x + 1) | 
| Answer» (a) (2x + 1)(x2 + 1) | |
| 113. | Common factor of 6x + 18xy is(a) y(b) 6y(c) 6x(d) xy | 
| Answer» Common factor of 6x + 18xy is 6x. | |
| 114. | Factorise the following expressions(i) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)(ii) a4 + 2a2b2 + b4 | 
| Answer» (i) (l + m)2 − 4lm = l2 + 2lm + m2 − 4lm = l2 − 2lm + m2 = (l − m)2 [(a − b)2 = a2 − 2ab + b2] (ii) a4 + 2a2b2 + b4 = (a2)2 + 2 (a2) (b2) + (b2)2 = (a2 + b2)2 [(a + b)2 = a2 + 2ab + b2] | |
| 115. | Evaluate : (0.7)2 – (0.3)2 | 
| Answer» (0.7)2 – (0.3)2 = (0.7 + 0.3) (0.7 - 0.3) = 1 x 0.4 = 0.4 | |
| 116. | Factorise : 16 – 9x2 | 
| Answer» 16 – 9x2 = (4)2 – (3x)2 = (4 + 3x) (4 – 3x) | |
| 117. | Factorise : 1 – 100a2 | 
| Answer» 1 – 100a2 = (1)2 – (10a)2 = (1 + 10a) (1 – 10a) | |
| 118. | Factorise : 4x2 – 81y2 | 
| Answer» 4x2 – 81y2 = (2x)2 – (9y)2 = (2x + 9y) (2x – 9y) | |
| 119. | Factorise: 2m(1-n) + 3(1-n) | 
| Answer» By taking 1-n as a common factor for the above equation we get, 2m (1-n) + 3(1-n) = (1-n) (2m + 3) | |
| 120. | Factorise completely : 25x3 – x | 
| Answer» 25x3 – x = x(25x2 - 1) = x[(5x)2 - (1)2] = x(5x + 1) (5x - 1) | |
| 121. | Factorise completely : a4 – b4 | 
| Answer» a4 – b4 = (a2)2 -(b2)2 = (a2 + b2) (a2 - b2) = (a2 + b2) (a + b) (a-b) | |
| 122. | Factorise : 2a – 4b – xa + 2bx | 
| Answer» 2a – 4b – xa + 2bx = 2(a-2b) - x(a-2b) = (a-2b) (2-x) | |
| 123. | Divide as directed:(a) 5(2x + 1)(3x + 5) ÷ (2x + 1)(b) 26xy(x + 5) (y – 4) ÷ 13x (y -4)(c) 52pqr(p + q) (q + r)( r + p) ÷ 104 pq(q + r)( r + p)(d) 20 ( y + 4) (y2 + 5y + 3) ÷ 5 (y + 4)(e) x ( x + 1) ( x + 2) (x + 3) ÷ x( x + 1) | 
| Answer» (a) 5(2x + 1)(3x + 5) ÷ (2x + 1) Answer: 5(2x + 1)(3x + 5) ÷ (2x + 1) (b) 26xy(x + 5) (y – 4) ÷ 13x (y -4) Answer: 26xy(x + 5) (y – 4) ÷ 13x (y -4) (c) 52pqr(p + q) (q + r)( r + p) ÷ 104 pq(q + r)( r + p) Answer: 52pqr(p + q) (q + r)( r + p) ÷ 104 pq(q + r)( r + p) (d) 20 ( y + 4) (y2 + 5y + 3) ÷ 5 (y + 4) Answer: 20 ( y + 4) (y2 + 5y + 3) ÷ 5 (y + 4) (e) x ( x + 1) ( x + 2) (x + 3) ÷ x( x + 1) Answer: x ( x + 1) ( x + 2) (x + 3) ÷ x( x + 1) | |
| 124. | Find and correct the errors in the following mathematical statements:Question 1: 4(x – 5) = 4x – 5Question 2: x(3x + 2) = 3x2 + 2Question 3: 2x + 3y = 5xyQuestion 4: x + 2x + 3x = 5xQuestion 5: 5y + 2y + y – 7y = 0Question 6: 3x + 2x = 5x2Question 7: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7Question 8: (2x)2 + 5x = 4x + 5x = 9xQuestion 9: (3x + 2)2 = 3x2 + 6x + 4 | 
| Answer» Question 1: 4(x – 5) = 4x – 5 Answer: 4(x – 5) = 4x – 20 Question 2: x(3x + 2) = 3x2 + 2 Answer: = 3x2 + 2x Question 3: 2x + 3y = 5xy Answer: 2x + 3y Question 4: x + 2x + 3x = 5x Answer: = 6x Question 5: 5y + 2y + y – 7y = 0 Answer: = y Question 6: 3x + 2x = 5x2 Answer: = 5x Question 7: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7 Answer: = 4x2 + 8x + 7 Question 8: (2x)2 + 5x = 4x + 5x = 9x Answer: 4x2 + 5x Question 9: (3x + 2)2 = 3x2 + 6x + 4 Answer: Using (a + b)2 = a2 + 2ab + b2; | |
| 125. | Factorise the expressions and divide them as directed(a) (y2 + 7y + 10) ÷ (y + 5)(b) (m2 – 14m – 32) ÷ (m + 2)(c) 5p2 – 25p + 20) ÷ (p – 1)(d) 4yz(z2 + 6z – 16) ÷ 2y (z + 8)(e) 5pq(p2 – q2) ÷ 2p (p + q)(f) 12xy (9x2 – 16y2) ÷ 4xy (3x + 4y)(g) 39y3(50y2 – 98) ÷ 26y2 (5y + 7) | 
| Answer» (a) (y2 + 7y + 10) ÷ (y + 5) Answer: (y2 + 7y + 10) ÷ (y + 5) (b) (m2 – 14m – 32) ÷ (m + 2) Answer: (m2 – 14m – 32) ÷ (m + 2) (c) 5p2 – 25p + 20) ÷ (p – 1) Answer: 5p2 – 25p + 20) ÷ (p – 1) (d) 4yz(z2 + 6z – 16) ÷ 2y (z + 8) Answer: 4yz(z2 + 6z – 16) ÷ 2y (z + 8) (e) 5pq(p2 – q2) ÷ 2p (p + q) Answer: 5pq(p2 – q2) ÷ 2p (p + q) (f) 12xy (9x2 – 16y2) ÷ 4xy (3x + 4y) Answer: 12xy (9x2 – 16y2) ÷ 4xy (3x + 4y) (g) 39y3(50y2 – 98) ÷ 26y2 (5y + 7) Answer: 39y3(50y2 – 98) ÷ 26y2 (5y + 7) | |
| 126. | Factorise the expressions.(i) ax² + bx(ii) 7p² + 21q²(iii) 2x³ + 2xy² + 2xz²(iv) am² + bm² + bn² + an²(v) (lm + l) + m + 1(vi) y (y + z) + 9 (y + z)(vii) 5y² – 20y – 8z + 2yz(viii) 10ab + 4a + 5b + 2(ix) 6xy – 4y + 6 – 9x | 
| Answer» (i) ax² + bx Answer: x(ax + b) (ii) 7p² + 21q² Answer: 7(p2 + 3q2) (iii) 2x³ + 2xy² + 2xz² Answer: 2x³ + 2xy² + 2xz² (iv) am² + bm² + bn² + an² Answer: a(m2 + n2) + b(m2 + n2) (v) (lm + l) + m + 1 Answer: l(m + 1) + 1(m + 1) (vi) y (y + z) + 9 (y + z) Answer: (y + 9)(y + z) (vii) 5y² – 20y – 8z + 2yz Answer: 5y(y + 4) + 2z(y + 4) (viii) 10ab + 4a + 5b + 2 Answer: 5b + 10ab + 2 + 4a (ix) 6xy – 4y + 6 – 9x Answer: 6xy – 4y + – 9x + 6 | |
| 127. | Factorise.(i) 4p² – 9q²(ii) 63a² – 112b²(iii) 49x² – 36(iv) 16x5 – 144x³(v) (l + m) ² – (l – m) ²(vi) 9x² y² – 16(vii) (x² – 2xy + y²) – z²(viii) 25a² – 4b² + 28bc – 49c² | 
| Answer» (i) 4p² – 9q² Answer: This can be factorised by using the equation; (a + b)(a – b) = a2 – b2 (ii) 63a² – 112b² Answer: 63a2 – 112b2 = 7(9a2 – 16b2) (iii) 49x² – 36 Answer: (7x + 6)(7x – 6) (iv) 16x5 – 144x³ Answer:16x5-144x3 (v) (l + m) ² – (l – m) ² Answer: (l + m + l – m)(l + m – l + m) (vi) 9x² y² – 16 Answer: (3xy + 4)(3x – 4) (vii) (x² – 2xy + y²) – z² Answer: (x2 – 2xy + y2) – z2 (viii) 25a² – 4b² + 28bc – 49c² Answer: 25a2 – 4b2 + 28bc – 49c2 | |
| 128. | Factorise.(i) a4 – b4(ii) p4 – 81(iii) x4 – (y + z)4(iv) x4 – (x – z)4(v) a4 – 2a²b² + b4 | 
| Answer» (i) a4 – b4 Answer: a4-b4 = (a²+b²)(a²-b²) (ii) p4 – 81 (iii) x4 – (y + z)4 Answer: x4 – (y + z)4 (iv) x4 – (x – z)4 Answer: x4 – (x – z)4 (v) a4 – 2a²b² + b4 Answer: a4 – 2a2b2 + b4 | |
| 129. | Factorise:(0.7)2 – (0.3)2 | 
| Answer» (0.7)2 – (0.3)2 Identity a2 – b2 = (a + b)(a – b) = (0.7 + 0.3)(0.7 – 0.3) = (1.0)(0.4) = 0.4 | |
| 130. | Factorise:x4 – y4 | 
| Answer» x4 – y4 = (x2)2 – (y2)2 Identity a2 – b2 = (a + b)(a – b) = (x2 + y2)(x2 – y2) = (x2+ y2)(x + y)(x – y) | |
| 131. | Factorise:x2 - \(\frac{9}{16}\) | 
| Answer» x2 - \(\frac{9}{16}\) = x2 - (\(\frac{3}{4}\))2 Identity a2 - b2 = (a + b)(a - b) = (x + \(\frac{3}{4}\))(x - \(\frac{3}{4}\)) | |
| 132. | (3x – 2y)2 – (3x -2y)2 = ………… A) 2xy2 B) 7y2 C) 9x2 D) 0 | 
| Answer» Correct option is D) 0 Correct option is (D) 0 \((3x–2y)^2–(3x-2y)^2=0\) | |
| 133. | Factorise:4a2 – 25 | 
| Answer» 4a2 – 25 = (2a)2 – 52 [a2 – b2 = (a + b)(a - b)] = (2a + 5)(2a – 5) | |
| 134. | Factorise: 4a2 – 9 | 
| Answer» 4a2 – 9 can be written as (2a) 2 – (3)2 By using the formula a2 – b2 = (a+b) (a-b) Now solving for the above equation (2a)2 – (3)2 = (2a+3) (2a-3) | |
| 135. | 4x + 1 is a factor of ………….. A) x2 – 16 B) 16x – 3 C) 10x – 3 D) 16x2 – 1 | 
| Answer» Correct option is D) 16x2 – 1 Correct option is (D) 16x2 – 1 (A) \(x^2\) - 16 \(=x^2-4^2=(x-4)(x+4)\) \(\therefore\) (4x+1) is not a factor of \(x^2-16\) (B) 4x+1 is not a factor of 16x - 3 (C) 4x+1 is not a factor of 10x – 3 (D) \(16x^2-1=(4x)^2-1^2\) = (4x-1) (4x+1) \(\therefore\) 4x - 1 is a factor of \(16x^2-1\) | |
| 136. | (2a + 1) \((\frac{1}{2a-1}-\frac{2}{4a^2-1})\) = …………… A) -1 B) – 3 C) 1 D) 2 | 
| Answer» Correct option is C) 1 Correct option is (C) 1 \((2a+1)(\frac1{2a-1}-\frac2{4a^2-1})\) \(=(2a+1)(\frac{2a+1-2}{4a^2-1})\) \(=(2a+1)\frac{(2a-1)}{4a^2-1}\) \(=\frac{4a^2-1}{4a^2-1}=1\) | |
| 137. | x2 – 7 = ……………. A) (x + 7) (x – 7) B)(x + √7)(x – √7) C) (x – 3) (x + 4)D) None | 
| Answer» B)(x + √7)(x – √7) Correct option is (B)(x + √7)(x – √7) \(x^2-7=x^2-(\sqrt7)^2\) = \((x+\sqrt7)(x–\sqrt7)\) | |
| 138. | Find the errors and correct the following mathematical sentence:(x – 4)2 = x2 – 16 | 
| Answer» (x – 4)2 = x2 – 16 (x – 4)2 = x2 – 16 = (x)2 – (4)2 (a – b)2 ≠ a2 – b2 ∴ (x - 4)2 ≠ (x)2 – (4)2 ∴ The given sentence is wrong. Correct sentence is (x – 4)2 = x2 – 8x + 16. | |
| 139. | (a + b)3 – 3ab (a + b) = …………….. A) a3 + b3 B) a3 -b3 C) a – b3 D) 3a-b | 
| Answer» Correct option is A) a3 + b3 Correct option is (A) a3 + b3 \((a+b)^3–3ab\,(a+b)\) \(=a^3+b^3+3ab(a+b)-3ab(a+b)\) = \(a^3+b^3\) | |
| 140. | (l – 8)2 = ………… A) l2 – 16l + 64 B) l – 8l +8C) l – 16l2 + 0 D) l2 – 16 | 
| Answer» A) l2 – 16l + 64 Correct option is (A) l2 – 16l + 64 \((l–8)^2=l^2-2\times l\times8+8^2\) = \(l^2–16l+64\) | |
| 141. | x2 – 2 + \(\frac{1}{x^2}\) = ……………. A) (x – \(\frac{1}{x}\))2 B) (\(\frac{1}{x}\) – 3)2 C) (3x – \(\frac{1}{x}\))2D) None | 
| Answer» Correct option is A) (x – \(\frac{1}{x}\))2 Correct option is (A) \((x-\frac1x)^2\) \(x^2-2+\frac1{x^2}\) \(=x^2-2\times x\times\frac1x+(\frac1{x})^2\) = \((x-\frac1x)^2\) | |
| 142. | x + \(\frac{1}{x}\) = 6 then x2 + \(\frac{1}{x^2}\) = ………………A) 19 B) 16 C) 34 D) 10 | 
| Answer» Correct option is C) 34 Correct option is (C) 34 x + \(\frac1x\) = 6 \(\Rightarrow\) \((x+\frac1x)^2=6^2\) \(\Rightarrow\) \(x^2+\frac1{x^2}+2=36\) \(\Rightarrow\) \(x^2+\frac1{x^2}\) = 36 - 2 = 34 | |
| 143. | 9x2 – 256 = …………….. A) (3x + 16)2 B) (3x + 16)(3x – 16) C) (3x – 6)2 D) (x – 16)(3x – 1) | 
| Answer» B) (3x + 16)(3x – 16) Correct option is (B) (3x + 16)(3x – 16) \(9x^2–256=(3x)^2-16^2\) = (3x-16) (3x+16) | |
| 144. | In the problem x4 + \(\frac{1}{x^4}\) = ……………..A) 1154 B) 1145 C) 1123 D) 1192 | 
| Answer» Correct option is A) 1154 Correct option is (A) 1154 \(x+\frac1x=6\) \(\Rightarrow\) \(x^2+\frac1{x^2}+2=36\) (By squaring both sides) \(\Rightarrow\) \(x^2+\frac1{x^2}=36-2=34\) \(\Rightarrow\) \((x^2+\frac1{x^2})^2=34^2\) \(\Rightarrow\) \(x^4+\frac1{x^4}+2=1156\) \(\Rightarrow\) \(x^4+\frac1{x^4}\) = 1156 - 2 = 1154 | |
| 145. | 812 – 38 = …………. A) 81 B) 16 C) 0 D) 19 | 
| Answer» Correct option is C) 0 Correct option is (C) 0 \(81^2–3^8\) \(=(3^4)^2-3^8=3^8-3^8=0\) | |
| 146. | (6 + p + q)(6 – p – q) = …………. A) 36 – p2 – q2 – 2pq B) 36 – 2p + q C) 36 – 2p -2q D) 36 – p2 – q2 | 
| Answer» A) 36 – p2 – q2 – 2pq Correct option is (A) 36 – p2 – q2 – 2pq (6 + p + q) (6 – p – q) = (6 + (p + q)) (6 – (p + q)) \(=6^2-(p+q)^2\) \(=36–(p^2+q^2+2pq)\) = \(36–p^2–q^2–2pq\) | |
| 147. | ar + br + at + bt = ………….. A) (r + t) (b – a) B) (r – t) (r + a)C) (r + t) (a +b) D) (r – t) (a – b) | 
| Answer» C) (r + t) (a +b) Correct option is (C) (r+t) (a+b) ar+br+at+bt = r(a+b) + t(a+b) = (a + b) (r + t) | |
| 148. | 7a (5x – 3y) + 5b (5x – 3y) = ………….. A) (5x – 3) (7a – 5) B) (5x-3y) (7a + 5b) C) (5x – 3) (4x – 1) D) (5x – y) (7x – 3) | 
| Answer» B) (5x-3y)(7a + 5b) Correct option is (B) (5x-3y) (7a + 5b) 7a (5x – 3y) + 5b (5x – 3y) = (5x-3y) (7a+5b) | |
| 149. | a4 – 81 = …………..A) (a – 3) (a + 3) (a2 + 9) B) (a – 3)2 (a2 + 1) C) (a – 3)4 (a + 1) D) None | 
| Answer» A) (a – 3) (a + 3) (a2 + 9) Correct option is (A) (a – 3) (a + 3) (a2 + 9) \(a^4-81=(a^2)^2-9^2\) \(=(a^2-9)(a^2+9)\) \(=(a^2-3^2)(a^2+9)\) = \((a–3)(a+3)(a^2+9)\) | |
| 150. | Factorise :3a2 x - bx + 3a2 - b | 
| Answer» 3a2 x - bx + 3a2 - b = x (3a2 - b) + 1 (3a2 - b) = (x + 1) (3a2 - b) | |