Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Expansion of (x + 1/x)2 is x2 + 1/x2 + 2.

Answer»

True

Expansion of (x + 1/x)2 is x2 + 1/x2 + 2.

102.

Factors of expression x2 + (a + b) x + ab are(a) (x + a)(x – b)(b) (x – a) (x + b)(c) (x + a)(x + b)(d) (x – a) (x – b)

Answer»

(c) (x + a)(x + b)

103.

Factorize 3x3 + 3x2 + x + 1.

Answer»

3x3 + 3x2 + x + 1

= 3x2 (x + 1) + 1 (x + 1)

= (x + 1) (3x2 + 1)

104.

Square of (2x + 3) is(a) 4x2 + 6x + 9(b) 4x2 + 2x + 9(c) 4x2 + 12x + 9(d) 4x2 + 9

Answer»

(c) 4x2 + 12x + 9

105.

Factorize the following expressionx2 + 8x + 16

Answer»

x2 + 8x + 16

= x2 + 2 × x + 4 + (4)2

= (x + 4)2

106.

Simplify 2x(2x2 + 2x – 9).

Answer»

2x (2x2 + 2x – 9)

= 2x × 2x2 + 2x × 2x – 2x × 9

= 4x3 + 4x2 – 18x

107.

Factor of 4x2 + 8xy + 4y2 is(a) (2x + 2y)2(b) (2x – 2y)2(c) (2x + y)2(d) (x + 2y)2

Answer»

Factor of 4x2 + 8xy + 4y2 is (2x + 2y)2.

108.

If x + y = 20, xy = 34 then find the value of x2 + y2.

Answer»

(x + y)2 = x2 + y2 + 2xy

⇒ (20)2 = x2 + y2 + 2(34)

⇒ 400 = x2 + y2 + 68

⇒ x2 + y2 = 400 – 68

⇒ x2 + y2 = 332

109.

Square of (6x + 1) is(a) 36x2 + 1(b) 36x2 + 6x + 1(c) 36x2 + 6(d) 36x2 + 12x + 1.

Answer»

(d) 36x2 + 12x + 1.

110.

Find common factor of 2(x + y) + 3(x + y) + 5(x + y)

Answer»

Common factor is (x + y)

111.

The product of expression (2a – 3) (2a + 3) is(a) 4a2 + 2a + 9(b) 4a2 – 9(c) 4a2 – 6(d) 4a2 – 4a + 9

Answer»

The product of expression (2a – 3) (2a + 3) is 4a2 – 9.

112.

Factor of 2x3 + x2 + 2x + 1 is(a) (2x + 1)(x2 + 1)(b) (x2 + 2)(x + 1)(c) (x + 2)(x2 + 1)(d) (x2 + 1)(x + 1)

Answer»

(a) (2x + 1)(x2 + 1)

113.

Common factor of 6x + 18xy is(a) y(b) 6y(c) 6x(d) xy

Answer»

Common factor of 6x + 18xy is 6x.

114.

Factorise the following expressions(i) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)(ii) a4 + 2a2b2 + b4

Answer»

(i) (l + m)2 − 4lm 

= l2 + 2lm + m2 − 4lm

= l2 − 2lm + m2

= (l − m)    [(a − b)2 = a2 − 2ab + b2]

(ii) a4 + 2a2b2 + b4 

= (a2)2 + 2 (a2) (b2) + (b2)2

= (a2 + b2)2       [(a + b)2 = a2 + 2ab + b2]

115.

Evaluate : (0.7)2 – (0.3)2 

Answer»

(0.7)2 – (0.3)2 

= (0.7 + 0.3) (0.7 - 0.3)

= 1 x 0.4 = 0.4

116.

Factorise : 16 – 9x2

Answer»

16 – 9x2 = (4)2 – (3x)2 = (4 + 3x) (4 – 3x)

117.

Factorise : 1 – 100a2 

Answer»

1 – 100a2 = (1)2 – (10a)2 = (1 + 10a) (1 – 10a)

118.

Factorise : 4x2 – 81y2 

Answer»

4x2 – 81y2 = (2x)2 – (9y)2 = (2x + 9y) (2x – 9y)

119.

Factorise: 2m(1-n) + 3(1-n)

Answer»

By taking 1-n as a common factor for the above equation we get,

2m (1-n) + 3(1-n) = (1-n) (2m + 3)

120.

Factorise completely : 25x3 – x

Answer»

25x3 – x = x(25x2 - 1)

= x[(5x)2 - (1)2]

= x(5x + 1) (5x - 1)

121.

Factorise completely : a4 – b4 

Answer»

a4 – b4 = (a2)2 -(b2)2 

= (a2 + b2) (a2 - b2)

= (a2 + b2) (a + b) (a-b)

122.

Factorise : 2a – 4b – xa + 2bx

Answer»

2a – 4b – xa + 2bx

= 2(a-2b) - x(a-2b)

= (a-2b) (2-x)

123.

Divide as directed:(a) 5(2x + 1)(3x + 5) ÷ (2x + 1)(b) 26xy(x + 5) (y – 4) ÷ 13x (y -4)(c) 52pqr(p + q) (q + r)( r + p) ÷ 104 pq(q + r)( r + p)(d) 20 ( y + 4) (y2 + 5y + 3) ÷ 5 (y + 4)(e) x ( x + 1) ( x + 2) (x + 3) ÷ x( x + 1)

Answer»

(a) 5(2x + 1)(3x + 5) ÷ (2x + 1)

Answer: 5(2x + 1)(3x + 5) ÷ (2x + 1)
= 5(3x + 5) = 15x + 25

(b) 26xy(x + 5) (y – 4) ÷ 13x (y -4)

Answer: 26xy(x + 5) (y – 4) ÷ 13x (y -4)
= 2y(x + 5)(y – 4) ÷(y – 4)
= 2Y (x + 5) = 2xy + 10y

(c) 52pqr(p + q) (q + r)( r + p) ÷ 104 pq(q + r)( r + p)

Answer: 52pqr(p + q) (q + r)( r + p) ÷ 104 pq(q + r)( r + p)
= r (p + q) (q + r) ( r + p) ÷ 2 (q + r) (r + p) 
= r (p + q) ÷ 2

(d) 20 ( y + 4) (y2 + 5y + 3) ÷ 5 (y + 4)

Answer: 20 ( y + 4) (y2 + 5y + 3) ÷ 5 (y + 4)
= 4 (y + 4) (y2 + 5y + 3) ÷ (y + 4)
= 4(y2 + 5y + 3)

(e) x ( x + 1) ( x + 2) (x + 3) ÷ x( x + 1)

Answer: x ( x + 1) ( x + 2) (x + 3) ÷ x( x + 1)
= (x + 2)(x + 3)

124.

Find and correct the errors in the following mathematical statements:Question 1: 4(x – 5) = 4x – 5Question 2: x(3x + 2) = 3x2 + 2Question 3: 2x + 3y = 5xyQuestion 4: x + 2x + 3x = 5xQuestion 5: 5y + 2y + y – 7y = 0Question 6: 3x + 2x = 5x2Question 7: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7Question 8: (2x)2 + 5x = 4x + 5x = 9xQuestion 9: (3x + 2)2 = 3x2 + 6x + 4​

Answer»

Question 1: 4(x – 5) = 4x – 5

Answer: 4(x – 5) = 4x – 20

Question 2: x(3x + 2) = 3x2 + 2

Answer: = 3x2 + 2x

Question 3: 2x + 3y = 5xy

Answer: 2x + 3y
Here; x and y are as different as chalk and cheese and hence cannot be added together.

Question 4: x + 2x + 3x = 5x

Answer: = 6x
It is like adding one apple, two apples and three apples.

Question 5: 5y + 2y + y – 7y = 0

Answer: = y

Question 6: 3x + 2x = 5x2

Answer: = 5x


Question 7: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7

Answer: = 4x2 + 8x + 7

Question 8: (2x)2 + 5x = 4x + 5x = 9x

Answer: 4x2 + 5x

Question 9: (3x + 2)2 = 3x2 + 6x + 4

Answer: Using (a + b)2 = a2 + 2ab + b2;
= 9x2 + 12x + 4

125.

Factorise the expressions and divide them as directed(a) (y2 + 7y + 10) ÷ (y + 5)(b) (m2 – 14m – 32) ÷ (m + 2)(c) 5p2 – 25p + 20) ÷ (p – 1)(d) 4yz(z2 + 6z – 16) ÷ 2y (z + 8)(e) 5pq(p2 – q2) ÷ 2p (p + q)(f) 12xy (9x2 – 16y2) ÷ 4xy (3x + 4y)(g) 39y3(50y2 – 98) ÷ 26y2 (5y + 7)

Answer»

(a) (y2 + 7y + 10) ÷ (y + 5)

Answer: (y2 + 7y + 10) ÷ (y + 5)
Here, dividend can be factorised by splitting the middle term as follows:
= (y2 + 5y + 2y + 10) ÷ (y + 5)
= [y (y + 5) + 2 (y + 5) ] ÷ (y + 5)
= (y + 2) (y + 5) ÷ (y + 5)
= y + 2

(b) (m2 – 14m – 32) ÷ (m + 2)

Answer: (m2 – 14m – 32) ÷ (m + 2)
Here, dividend can be factorised by splitting the middle term as follows:
= (m2 – 16m + 2m – 32) ÷ (m + 2)
= [ m(m – 16) + 2(m – 16) ] ÷ (m + 2)
= (m + 2) (m – 16) ÷ (m +2)
= m – 16

(c) 5p2 – 25p + 20) ÷ (p – 1)

Answer: 5p2 – 25p + 20) ÷ (p – 1)
Here, dividend can be factorised by splitting the middle term as follows:
= (5p2 – 5p – 20p + 20) ÷ (p - 1)
= [5p(p – 1) – 20(p – 1) ] ÷ (p – 1 )
= (5p – 20) (p – 1) ÷ (p – 1)
= 5p – 20

(d) 4yz(z2 + 6z – 16) ÷ 2y (z + 8)

Answer: 4yz(z2 + 6z – 16) ÷ 2y (z + 8)
= 2z(z2 + 8z – 2z – 16) ÷ (z + 8)2= 2z [ z(z + 8) – 2(z + 8) ] ÷ (z + 8)
= 2z (z – 2) (z + 8) ÷(z + 8)
= 2z (z – 2)

(e) 5pq(p2 – q2) ÷ 2p (p + q)

Answer: 5pq(p2 – q2) ÷ 2p (p + q)
Using (a +b) (a – b) = a2 – b2; the equation can be written as follows:
= 5pq (p + q) (p – q) ÷ 2p (p + q)
= 5q(p – q) ÷ 2

(f) 12xy (9x2 – 16y2) ÷ 4xy (3x + 4y)

Answer: 12xy (9x2 – 16y2) ÷ 4xy (3x + 4y)
This can be solved as previous question;
= 3 (3x + 4y) (3x – 4y) ÷ (3x + 4y)
= 3 (3x – 4y)

(g) 39y3(50y2 – 98) ÷ 26y2 (5y + 7)

Answer: 39y3(50y2 – 98) ÷ 26y2 (5y + 7)
= 2 x 39y3(25y2 – 49) ÷ 26y2 (5y + 7)
= 3y (25y2 – 49) ÷ (5y + 7)
= 3y (5y + 7) (5y – 7) ÷ (5y + 7)
= 3y (5y – 7)

126.

Factorise the expressions.(i) ax² + bx(ii) 7p² + 21q²(iii) 2x³ + 2xy² + 2xz²(iv) am² + bm² + bn² + an²(v) (lm + l) + m + 1(vi) y (y + z) + 9 (y + z)(vii) 5y² – 20y – 8z + 2yz(viii) 10ab + 4a + 5b + 2(ix) 6xy – 4y + 6 – 9x

Answer»

(i) ax² + bx

Answer: x(ax + b)

(ii) 7p² + 21q²

Answer: 7(p2 + 3q2)

(iii) 2x³ + 2xy² + 2xz²

Answer: 2x³ + 2xy² + 2xz²
= 2x(x²+y²+z²)

(iv) am² + bm² + bn² + an²

Answer: a(m2 + n2) + b(m2 + n2)
= (a + b)(m2 + n2)

(v) (lm + l) + m + 1

Answer: l(m + 1) + 1(m + 1)
= (l + 1)(m + 1)

(vi) y (y + z) + 9 (y + z)

Answer: (y + 9)(y + z)

(vii) 5y² – 20y – 8z + 2yz

Answer: 5y(y + 4) + 2z(y + 4)
= (5 + 2z)(y + 4)

(viii) 10ab + 4a + 5b + 2

Answer: 5b + 10ab + 2 + 4a
= 5b(1 + 2a) + 2(1 + 2a)
= (5b + 2)(1 + 2a)

(ix) 6xy – 4y + 6 – 9x

Answer: 6xy – 4y + – 9x + 6
= 2y (3x – 2) - 3 (3x - 2)
= (2y – 3)(3x – 2)

127.

Factorise.(i) 4p² – 9q²(ii) 63a² – 112b²(iii) 49x² – 36(iv) 16x5 – 144x³(v) (l + m) ² – (l – m) ²(vi) 9x² y² – 16(vii) (x² – 2xy + y²) – z²(viii) 25a² – 4b² + 28bc – 49c²

Answer»

(i) 4p² – 9q²

Answer: This can be factorised by using the equation; (a + b)(a – b) = a2 – b2
Factors = (2p + 3q)(2p – 3q)

(ii) 63a² – 112b²

Answer: 63a2 – 112b2 = 7(9a2 – 16b2)
= 7(3a + 4b)(3a – 4b)

(iii) 49x² – 36

Answer: (7x + 6)(7x – 6)

(iv) 16x5 – 144x³

Answer:16x5-144x3
= x³(16x²-144)
= x³(4x+12)(4x-12)

(v) (l + m) ² – (l – m) ²

Answer: (l + m + l – m)(l + m – l + m)
2l x 2m = 4lm

(vi) 9x² y² – 16

Answer: (3xy + 4)(3x – 4)

(vii) (x² – 2xy + y²) – z²

Answer: (x2 – 2xy + y2) – z2
= (x – y)2 – z2
= (x – y + z)(x – y – z)

(viii) 25a² – 4b² + 28bc – 49c²

Answer: 25a2 – 4b2 + 28bc – 49c2
= (5a)2 – (2b)2 + 2 x 2b x 7c – (7c)2
= (5a)2 – [(2b)2 – 2 x 2b x 7c + (7c)2]
= (5a)2 – (2b – 7c)2
This can be further factorised by using (a + b)(a – b) = a2 – b2
= (5a + 2b – 7c)(5a – 2b + 7c)

128.

Factorise.(i) a4 – b4(ii) p4 – 81(iii) x4 – (y + z)4(iv) x4 – (x – z)4(v) a4 – 2a²b² + b4

Answer»

(i) a4 – b4

Answer: a4-b4 = (a²+b²)(a²-b²)

(ii) p4 – 81
=(p²+9)(p²-9)

(iii) x4 – (y + z)4

Answer: x4 – (y + z)4
= (x²+(y+z) ²)(x²-(y+z) ²)
= (x²+(y+z)²)[(x+y+z)(x-y-z)]

(iv) x4 – (x – z)4

Answer: x4 – (x – z)4
=(x²-(x-z) ²)(x²+(x-z) ²)
=[(x+x-z)(x-x+z)](x²+(x-z) ²]

(v) a4 – 2a²b² + b4

Answer: a4 – 2a2b2 + b4
This can be factorised by using the identity; (a - b)2 = a2 – 2ab + b2
Factors = (a2 – b2)2 = (a2 – b2)(a2 – b2)

129.

Factorise:(0.7)2 – (0.3)2

Answer»

(0.7)2 – (0.3)2 

Identity a2 – b2 = (a + b)(a – b) 

= (0.7 + 0.3)(0.7 – 0.3)

= (1.0)(0.4) 

= 0.4

130.

Factorise:x4 – y4

Answer»

x4 – y4 = (x2)2 – (y2)2 

Identity a2 – b2 = (a + b)(a – b) 

= (x2 + y2)(x2 – y2

= (x2+ y2)(x + y)(x – y)

131.

Factorise:x2 - \(\frac{9}{16}\)

Answer»

x2\(\frac{9}{16}\) = x2 - (\(\frac{3}{4}\))2

Identity a2 - b2 = (a + b)(a - b)

= (x + \(\frac{3}{4}\))(x - \(\frac{3}{4}\))

132.

(3x – 2y)2 – (3x -2y)2 = ………… A) 2xy2 B) 7y2 C) 9x2 D) 0

Answer»

Correct option is  D) 0

Correct option is (D) 0

\((3x–2y)^2–(3x-2y)^2=0\)

133.

Factorise:4a2 – 25

Answer»

4a2 – 25 = (2a)2 – 52 

[a2 – b= (a + b)(a - b)] 

= (2a + 5)(2a – 5)

134.

Factorise: 4a2 – 9

Answer»

4a2 – 9 can be written as (2a) 2 – (3)2

By using the formula a2 – b2 = (a+b) (a-b)

Now solving for the above equation

(2a)2 – (3)2 = (2a+3) (2a-3)

135.

4x + 1 is a factor of ………….. A) x2 – 16 B) 16x – 3 C) 10x – 3 D) 16x2 – 1

Answer»

Correct option is  D) 16x2 – 1

Correct option is (D) 16x2 – 1

(A) \(x^2\) - 16 \(=x^2-4^2=(x-4)(x+4)\)

\(\therefore\) (4x+1) is not a factor of \(x^2-16\)

(B) 4x+1 is not a factor of 16x - 3 

(C) 4x+1 is not a factor of 10x – 3 

(D) \(16x^2-1=(4x)^2-1^2\)  = (4x-1) (4x+1)

\(\therefore\) 4x - 1 is a factor of \(16x^2-1\)

136.

(2a + 1)  \((\frac{1}{2a-1}-\frac{2}{4a^2-1})\) = …………… A) -1 B) – 3 C) 1 D) 2

Answer»

Correct option is  C) 1

Correct option is (C) 1

\((2a+1)(\frac1{2a-1}-\frac2{4a^2-1})\) \(=(2a+1)(\frac{2a+1-2}{4a^2-1})\)

\(=(2a+1)\frac{(2a-1)}{4a^2-1}\)

\(=\frac{4a^2-1}{4a^2-1}=1\)

137.

x2 – 7 = ……………. A) (x + 7) (x – 7) B)(x + √7)(x – √7) C) (x – 3) (x + 4)D) None

Answer»

B)(x + √7)(x – √7)

Correct option is (B)(x + √7)(x – √7)

\(x^2-7=x^2-(\sqrt7)^2\)

\((x+\sqrt7)(x–\sqrt7)\)

138.

Find the errors and correct the following mathematical sentence:(x – 4)2 = x2 – 16

Answer»

(x – 4)2 = x2 – 16

(x – 4)2 = x2 – 16 = (x)2 – (4)2

(a – b)2 ≠ a2 – b2

∴ (x - 4)2 ≠ (x)2 – (4)2

∴ The given sentence is wrong.

Correct sentence is (x – 4)2 = x2 – 8x + 16.

139.

(a + b)3 – 3ab (a + b) = …………….. A) a3 + b3 B) a3 -b3 C) a – b3 D) 3a-b

Answer»

Correct option is  A) a3 + b3

Correct option is (A) a3 + b3

\((a+b)^3–3ab\,(a+b)\) \(=a^3+b^3+3ab(a+b)-3ab(a+b)\)

\(a^3+b^3\)

140.

(l – 8)2 = ………… A) l2 – 16l + 64 B) l – 8l +8C) l – 16l2 + 0 D) l2 – 16

Answer»

A) l2 – 16l + 64

Correct option is (A) l2 – 16l + 64

\((l–8)^2=l^2-2\times l\times8+8^2\)

\(l^2–16l+64\)

141.

x2 – 2 + \(\frac{1}{x^2}\) = ……………. A) (x – \(\frac{1}{x}\))2 B) (\(\frac{1}{x}\) – 3)2 C) (3x – \(\frac{1}{x}\))2D) None 

Answer»

Correct option is  A) (x – \(\frac{1}{x}\))2 

Correct option is (A) \((x-\frac1x)^2\)

\(x^2-2+\frac1{x^2}\) \(=x^2-2\times x\times\frac1x+(\frac1{x})^2\)

\((x-\frac1x)^2\)

142.

x + \(\frac{1}{x}\) = 6 then x2 + \(\frac{1}{x^2}\) = ………………A) 19 B) 16 C) 34 D) 10

Answer»

Correct option is  C) 34

Correct option is (C) 34

x + \(\frac1x\) = 6

\(\Rightarrow\) \((x+\frac1x)^2=6^2\)

\(\Rightarrow\) \(x^2+\frac1{x^2}+2=36\)

\(\Rightarrow\) \(x^2+\frac1{x^2}\) = 36 - 2 = 34

143.

9x2 – 256 = …………….. A) (3x + 16)2 B) (3x + 16)(3x – 16) C) (3x – 6)2 D) (x – 16)(3x – 1)

Answer»

B) (3x + 16)(3x – 16)

Correct option is (B) (3x + 16)(3x – 16)

\(9x^2–256=(3x)^2-16^2\) = (3x-16) (3x+16)

144.

In the problem x4 + \(\frac{1}{x^4}\) = ……………..A) 1154 B) 1145 C) 1123 D) 1192

Answer»

Correct option is  A) 1154

Correct option is (A) 1154

\(x+\frac1x=6\)

\(\Rightarrow\) \(x^2+\frac1{x^2}+2=36\)   (By squaring both sides)

\(\Rightarrow\) \(x^2+\frac1{x^2}=36-2=34\)

\(\Rightarrow\) \((x^2+\frac1{x^2})^2=34^2\)

\(\Rightarrow\) \(x^4+\frac1{x^4}+2=1156\)

\(\Rightarrow\) \(x^4+\frac1{x^4}\) = 1156 - 2 = 1154

145.

812 – 38 = …………. A) 81 B) 16 C) 0 D) 19

Answer»

Correct option is  C) 0

Correct option is (C) 0

\(81^2–3^8\) \(=(3^4)^2-3^8=3^8-3^8=0\)

146.

(6 + p + q)(6 – p – q) = …………. A) 36 – p2 – q2 – 2pq B) 36 – 2p + q C) 36 – 2p -2q D) 36 – p2 – q2

Answer»

A) 36 – p2 – q2 – 2pq

Correct option is (A) 36 – p2 – q2 – 2pq

(6 + p + q) (6 – p – q) = (6 + (p + q)) (6 – (p + q))

\(=6^2-(p+q)^2\)

\(=36–(p^2+q^2+2pq)\)

\(36–p^2–q^2–2pq\)

147.

ar + br + at + bt = ………….. A) (r + t) (b – a) B) (r – t) (r + a)C) (r + t) (a +b) D) (r – t) (a – b)

Answer»

C) (r + t) (a +b)

Correct option is (C) (r+t) (a+b)

ar+br+at+bt = r(a+b) + t(a+b)

= (a + b) (r + t)

148.

7a (5x – 3y) + 5b (5x – 3y) = ………….. A) (5x – 3) (7a – 5) B) (5x-3y) (7a + 5b) C) (5x – 3) (4x – 1) D) (5x – y) (7x – 3)

Answer»

B) (5x-3y)(7a + 5b)

Correct option is (B) (5x-3y) (7a + 5b)

7a (5x – 3y) + 5b (5x – 3y) = (5x-3y) (7a+5b)

149.

a4 – 81 = …………..A) (a – 3) (a + 3) (a2 + 9) B) (a – 3)2 (a2 + 1) C) (a – 3)4 (a + 1) D) None

Answer»

A) (a – 3) (a + 3) (a2 + 9) 

Correct option is (A) (a – 3) (a + 3) (a2 + 9)

\(a^4-81=(a^2)^2-9^2\) \(=(a^2-9)(a^2+9)\)

\(=(a^2-3^2)(a^2+9)\)

\((a–3)(a+3)(a^2+9)\)

150.

Factorise :3a2 x - bx + 3a2 - b

Answer»

3a2 x - bx + 3a2 - b

= x (3a2 - b) + 1 (3a2 - b)

= (x + 1) (3a2 - b)