InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
If `u=inte^(ax)sin " bx dx" and v=int^(e^(ax))cos " bx dx"`,then `tan^(-1)((u)/(v))+tan^(-1)((b)/(a))` equalsA. bxB. 2 bxC. `b^(2)x^(2)`D. `sqrt(bx)` |
|
Answer» Correct Answer - a We have, `u=(e^(ax))/(a^(2)+b^(2))( asin bx - b cos bx)` and `v=(e^(ax))/(a^(2)+b^(2))(a cos bx+b sinbx)` `:. (u)/(v)=(a sin bx-bcosbx)/(a cosbx+b sinx)` `rArr (u)/(v)=(sin(bx-theta))/(cos(bx-theta))`, where `a=r costheta,b=r=sinthetaandtantheta=(b)/(a)` `rArr (u)/(v)=tan(bx-theta)` `rArr "tan"^(-1)(u)/(v)=bx-"tan"^(-1)(b)/(a)rArr"tan"^(-1)(u)/(v)+"tan"^(-1)(b)/(a)=bx` |
|
| 102. |
Let the equation of a curve passing through the point (0,1) be given b `y=intx^2e^(x^3)dx`. If the equation of the curve is written in the form `x=f(y)`, then f(y) isA. `sqrt(log_(e)(3y-2))`B. `root(3)(log_(e)(3y-2))`C. `root(3)(log_(e)(2-3y))`D. none of these |
|
Answer» Correct Answer - b We have , `y=intx^(2)e^(x^(3))dx=(1)/(3)inte^(x^(3))d(x^(3))=(1)/(3)e^(x^(3))+C`. It passes throught ( 0 , 1) Therefore , `1=(1)/(3)+CrArrC=(2)/(3)` `thereforey=(1)/(3)e^(x^(3))+(2)/(3)` `rArr3y=e^(x^(3))+2` ` rArr e^(x^(3))=3y=2rArrx^(3)-log_(e)(3y-2)rarrc=root(3)(log_(e)(3y-2))` |
|
| 103. |
`inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx` is equal toA. `xe^(tan^(-1)x)+C`B. `x^(2)e^(tan^(-1)x)+C`C. `(1)/(x)e^(tan^(-1)x)+C`D. none of these |
| Answer» Correct Answer - a | |
| 104. |
If `I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx.` Then for an arbitrary constant c, the value of `J-I` equal toA. `(1)/(2)log((e^(4x)-e^(2x)+1)/(e^(4x)+e^(2x)+1))+C`B. `(1)/(2)log((e^(2x)+e^(x)+1)/(e^(2x)-e^(x)+1))+C`C. `(1)/(2)log((e^(2x)+e^(x)+1)/(e^(2x)+e^(x)+1))+C`D. `(1)/(2)log((e^(2x)+e^(2x)+1)/(e^(2x)+e^(2x)+1))+C` |
|
Answer» Correct Answer - c We have , `J-I=int(e^(3x))/(e^(4x)+e^(2x)+1)-(e^(x))/(e^(4)+e^(2x)+1)dx` `rArrJ-I=int(e^(2x)-1)/(e^(4x)+e^(2x)+1)d(e^(x))` `rArrJ-I=int(t^(2)-1)/(t^(4)+t^(2)+1)dt` where `t=e^(x)` `rArrJ-I=int(1)/((t+(1)/(t))^(2)-1)d(t-(1)/(t))` `rArrJ-I=(1)/(2)log((t+(1)/(t)-1)/(t+(1)/(t)+1))+C` `rArrJ-I=(1)/(2)log((t^(2)-t+1)/(t^(2)+t+1))+C=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C` |
|
| 105. |
Evaluate `int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx`A. `sin2x+C`B. `cos2x+C`C. `tan2x+C`D. none of these |
|
Answer» Correct Answer - a Let `I=int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx` `rArrI=2int(cosx-sinx)/(cosx+sinx)xx(cosx+sinx)^(2)dx` `rArrI=int(cos^(2)x-sin^(2)x)dx=2intcos 2x dx=sin2x+C` |
|
| 106. |
Evaluate:`int(x^(5/2))/(sqrt(1+x^7))dx`A. `(2)/(7)log|x^(7//2)+sqrt(1+x^(7))|+C`B. `(1)/(2)log|(x^(7)+1)/(x^(7)-1)|+C`C. `2sqrt(1+x^(7))+C`D. none of these |
|
Answer» Correct Answer - a Let `=int(x^(5//5))/(sqrt(1+x^(7)))dx` `rArrI=(2)/(7)int(1)/(sqrt(1^(2)+(x^(7//2))^(2))^(7/(2)x(5)/(2)))dx` `rArrI=(2)/(7)int(1)/(sqrt(1^(2)+(x^(7//2))^(2)))d(x^(7//2))=(2)/(7)log|x^(7//2)+sqrt(1+x^(7))|+C` |
|
| 107. |
`int 5^(5^(5^x)) * 5^(5^x) * 5^x dx` is equal toA. `(5^(5^(x)))/((log5)^(3))+C`B. `5^(5^(5^(x)))(log5)^(3)+C`C. `(5^(5^(5^(x))))/((log5)^(3))+C`D. none of these |
| Answer» Correct Answer - c | |
| 108. |
`int(1)/(cosx-sinx)dx` is equal toA. `(1)/(sqrt(2))log|tan((x)/(2)+(3pi)/(8))|+C`B. `(1)/(sqrt(2))log|"cot"(x)/(2)|+C`C. `(1)/(sqrt(2))log|tan((x)/(2)-(3pi)/(8))|+C`D. `(1)/(sqrt(2))log|tan((x)/(2)-(pi)/(8))|+C` |
| Answer» Correct Answer - a | |
| 109. |
Evaluate:`int(e^tan^((-1)x))/((1+x^2))[(sec^(-1)sqrt(1+x^2)+cos^(-1)((1-x^2)/(1+x^2))]dx(x >0)dot`A. `I=e^(tan^(-1)x)(tan^(-1)x)+C`B. `I=e^(tan^(-1)x)(sec^(-1)sqrt(1+x^(2)))^(2)+C`C. `I=(1)/(2)e^(tan^(-1)x)(tan^(-1)x)^(2)+C`D. `I=e^(tan^(-1)x)("cosec"^(-1)sqrt(1+x^(2)))^(2)+C` |
|
Answer» Correct Answer - b Let `tan^(-1)x=thetaorx=tantheta` . Then, `I=inte^(theta)(theta^(2)+2 theta)d theta=e^(theta)theta^(2)+C` `rArrI=e^(tan^(-1)x)(tan^(-1)x)^(2)+C` `rArrI=e^(tan^(-1)x)(sec^(-1)sqrt(1+x^(2)))^(2)+C` |
|
| 110. |
Evaluate:`int(e^(2x)-2e^x)/(e^(2x)+1)dx`A. `log(e^(2x)+1)-tan^(-1)(e^(x))+C`B. `(1)/(2)log(e^(2x)+1)-tan^(-1)(e^(x))+C`C. `(1)/(2)log(e^(2x)+1)-2tan^(-1)(e^(x))+C`D. none of these |
| Answer» Correct Answer - c | |
| 111. |
Evaluate `inte^(3logx)(x^(4)+1)^(-1)dx`A. `log(x^(4)+1)+C`B. `(1)/(4)log(x^(4)+1)+C`C. `-log(x^(4)+1)`D. none of these |
| Answer» Correct Answer - b | |
| 112. |
Evaluate :`inta/(a^xb^x)dx` |
|
Answer» `1/(a^xb^x)=1/(ab)^x` `=(ab)^(-x)` `=e^(loge(ab)*(-x))` `int1/(a^xb^x)dx=inte^(loge(ab)*(-x)` `=1/(-loge(ab))e^(loge(ab)^(-x)` `=1/log_e(ab)*(ab)^(-x)+c` `=(a^(-x)*b^(-x))/(log_e(ab))+c`. |
|
| 113. |
If `intsin^(5)x cos^(4)x dx =A cos^(9) x +B cos^(7)x+C cos^(5)x+D`,then 9A +7B +5C=A. 1B. 0C. `-1`D. none of these |
|
Answer» Correct Answer - b `I=intsin^(5)xcos^(4)x dx` `rArr I=intsin^(4)x cos^(4)x sinx dx` `rArr I=- int (1-cos^(2)x)^(2)cos^(4) xd (cosx)` `rArrI=- int(1-t^(2))^(2)t^(4)dt` , where t cos x `rArrI=-int(t^(4)-2t^(6)+t^(8))dt` `rArrI=-(t^(9))/(9)+(2)/(7)t^(7)-(1)/(5)t^(5)+D` `rArrI=-(1)/(9)cos^(9)x+(2)/(7)cos^(7)x-(1)/(5)cos^(5)x+D` `:. A=-(1)/(9),B =(2)/(7)andC=-(1)/(5)rArr9A+7B+5C=0` |
|
| 114. |
Let `I_(n)=inttan^(n)xdx , n gt 1`. `I_(4)+I_(6)=atan^(5)x+bx^(5)+C` , where C is a constant of integration , then the ordered pair ( a , b) is equal toA. `((1)/(5),-1)`B. `(-(1)/(5),0)`C. `(-(1)/(5),1)`D. `((1)/(5),0)` |
|
Answer» Correct Answer - d We have , `:. I_(4)+I_(6)=inttan^(4)dx+inttan^(6)x dx` `rArr I_(4)+I_(6)=int(tan^(4)x+tan^(6)x)dx` `rArrI_(4)+I_(6)=inttan^(4)x(1+tan^(2)x)dx` `rArr I_(4)+I_(6)=inttan^(4)xsec^(2)xdx =inttan^(4)xd (tanx)` `rArrI_(4)+I_(6)=(1)/(5)tan^(5)x+C` But, `I_(4)+I_(6)=atan^(5)x+bx^(5)+C` `:. a=(1)/(5),b=0` Hence , `( a ,b)=((1)/(5),0)` |
|
| 115. |
If `int(1)/(1-sin ^(4)x)dx=(1)/(2) tanx+Atan^(-1){f(x)}+C`, thenA. `A=(1)/(2sqrt(2))andf(x) =sqrt(2)tanx`B. `A=sqrt(2)andf(x) =sqrt(2)tanx`C. `A=-sqrt(2)andf(x) =sqrt(2)tanx`D. none of these |
|
Answer» Correct Answer - a Let `I=int(1)/(1-sin^(4)x)dx=int(1)/((1-sin^(2)x)(1+sin^(2)x))dx` `rArrI=int(sec^(2)x)/(1+sin^(2)x)dx=int(1+tan^(2)x)/(1+2tan^(2)x)d(tanx)` `rArrI=(1)/(2)int(tan^(2)x+(1)/(2)+(1)/(2))/(tan^(2)x+(1)/(2))d(tanx)` `rArrI=(1)/(2)int(1+(1)/(2)*(1)/(tan^(2)x+(1)/(2)))d(tanx)` `rArrI=(1)/(2)[tan x +(sqrt(2))/(2)tan^(-1)(sqrt(2)tanx)]+C` `rArrI=(1)/(2)tan x +(sqrt(2))/(4)tan^(-1)(sqrt(2)tanx)+C` Hence , `A=(sqrt(2))/(4)=(1)/(2sqrt(2))andf(x)=sqrt(2)tanx`. |
|
| 116. |
If `int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C` , thenA. 7a = 5bB. 5a = 7bC. 7a + 5b = 0D. 5a + 7b = 0 |
|
Answer» Correct Answer - a We have `I=int(sin^(4)x)/(cos^(8)x)dx` `rArr I=int(tan^(4)x)/(cos^(4)x)dx` " " `["Dividing" N^(r) and^(r) "by" cos^(4)x]` `rArr I=inttan^(4)x(1+tan^(2)x)dx (tanx)` `rArrI=int(tan^(4)x+tan^(6)x)d (tanx)=(tan^(5)x)/(5)+(tan^(7)x)/(7)+C` `:. a=(1)/(7)and b =(1)/(5)rArr7a=5b` |
|
| 117. |
If `I=int(sin2x)/((3+4cosx)^(3))dx` , then I=A. `(3cosx+8)/((3+4cosx)^(2))+C`B. `(3+8cosx)/(16(3+4cosx)^(2))+C`C. `(3+cosx)/((3+4cosx)^(2))+C`D. `(3-8 cosx)/(16(3+4cosx)^(2))+C` |
|
Answer» Correct Answer - b We have, `I=2int(cosxsinx)/((3+4cos)^(3))dx` `rArrI=-(1)/(2)int(cosx)/((3+4cosx)^3)d(3+4cosx)` `rArrI=-(1)/(2)int(t-3)/(4t^(3))dt " where " t=3+4cosx` `rArrI=(1)/(8)((1)/(t)-(3)/(2t^(2)))+C` `rArrI=(2t-3)/(16t^(2))+C=(8 cosx+3)/(16(3+4cosx)^(2))+C` |
|
| 118. |
If `int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C` , thenA. `A=1//3,B=-2//3`B. `A=-1//3,B=2//3`C. `A=-1//3,B=1//3`D. `A=1//3,B=-1//6` |
| Answer» Correct Answer - a | |
| 119. |
If `int(dx)/(5-4cosx)=Atan^(-1)(Btanx//2)+C`, thenA. `A=1,B=1//3`B. `A=2//3,B=1//3`C. `A=-1,B=1//3`D. `A=1//3, B=2//3` |
| Answer» Correct Answer - b | |
| 120. |
Evaluate:`int(secx)/(log(secx+tanx)dx` |
|
Answer» `d/dx[log(secx+tanx)]=1/(sex+tanx)(secxtanx+sec^2x)` `=(secx+tanx)/(secx+tanx)` `=secx` `intsecx/(log(secx+tanx))dx=int(d[log(secx+tanx)])/log(secx+tanx)` `=log[log(secx+tanx)]+c`. |
|
| 121. |
`int(1)/(tanx+cotx+secx+"cosec "x)dx` is equal toA. `(1)/(2)(sinx+cosx+x)+C`B. `(1)/(2)(sinx-cosx-x)+C`C. `(1)/(2)(cosx-xsinx)+C`D. none of these |
|
Answer» Correct Answer - d Let `=int(1)/(tanx+cotx+secx+"cosec " x)dx` Then , `I=int(sinxcosx)/(1+sinx+cosx)dx` `rArrI=(1)/(2)int((1+2sinx cosx-1))/(1+sinx+cosx)dx=(1)/(2)int((sinx+cosx)^(2)-1)/(1+sinx+cosx)` `rArr I=(1)/(2)int((sinx+cosx+1)(sinx+cosx-1))/(1+sinx+cosx)dx` `rArr I=(1)/(2)int(sinx+cosx-1)dx` `rArrI=(1)/(2)(-cosx+sinx-1)+C` |
|
| 122. |
The integral `int(sec^2x)/((secx+tanx)^(9/2))dx`equals (for some arbitrary constant `K)dot``-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K``1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K``-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K``1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`A. `-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`B. `(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`C. `-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`D. `(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K` |
|
Answer» Correct Answer - c We have , `I=int(sec^(2)x)/((secx+tanx)^(9//2))dx` Let `secx-tanx=1//t and, secx(secx+tanx)dx=dt`. `thereforesecx dx=(1)/(t)dtand, secx=(1)/(2)(t+(1)/(t))` `thereforeI=(1)/(2)int((1)/(t)(t+(1)/(t)))/(t^(9//2))dt=(1)/(2)int(1)/(t^(9//2))+(1)/(t^(13//2))dt` `rArr I=-(1)/(7t^(7//2))-(1)/(11t^(11//2))+K` `rArrI=-(1)/(t^(11//2)){(t^(2))/(7)+(1)/(11)}+K` `rArr I=-(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K` |
|
| 123. |
The value of the integral `int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx` , isA. `(1)/(2)e^(secx^(2))+C`B. `(1)/(2)e^(sinx^(2))+C`C. `(1)/(2)sinx^(2)e^(cos^(2)x^(2))+C`D. none of these |
| Answer» Correct Answer - a | |
| 124. |
`int secx/(sqrt(sin(2x+alpha)+sinalpha))dx`A. `sqrt(secalpha(tanx+tanalpha))+C`B. `sqrt(2 secalpha(tanx-tanalpha))+C`C. `sqrt(2 secalpha(tanalpha-tanalpha))+C`D. none of these |
|
Answer» Correct Answer - a Let `I=int(secx)/(sqrt(2x+alpha+sinalpha))dx` `rArr I=int(secx)/(sqrt(2 sin(x+alpha)cosx))dx` `rArrI=(1)/(sqrt(2))int(sec^(2)x)/(sqrt(tanx cos alpha+sinalpha))dx` `rArrI=(1)/(sqrt(2)cosalpha)int(1)/(sqrt(tanx cosalpha+sinalpha))d(tanx cosalpha+sinalpha)` `rArrI=(1)/(sqrt(2)cos alpha)xx2sqrt(tan x cosalpha+sinalpha)+C` `rArr I=sqrt(2sec^(2)alpha(tan xcosalpha+sinalpha))+C` `rArrI=sqrt(2secalpha(tanx+tanalpha))+C`. |
|
| 125. |
`int{1+2tanx(tanx+secx)}^(1//2)dx` is equal toA. `logsec x (secx -tanx)+C`B. `log"cosec" (secx+tanx)+C`C. `logsecx(secx+tanx+C)`D. `log(secx+tanx)+C` |
| Answer» Correct Answer - c | |