This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Let n ≥ 2 be a natural number and \(0 < \theta < \frac{\pi }{2}.{\rm{\;Then\;}}\smallint \left( {\frac{{{{\left( {{\rm{si}}{{\rm{n}}^n}\theta - {\rm{sin}}\theta } \right)}^{\frac{1}{n}}}{\rm{cos}}\theta }}{{{\rm{si}}{{\rm{n}}^{n + 1}}\theta }}} \right)d\theta\)is equal to:(Where C is a constant of integration)1. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}\theta }}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)2. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} + 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}{\rm{\theta }}}}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)3. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 + \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}{\rm{\theta }}}}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\)4. \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} + 1}}\theta }}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\) |
|
Answer» Correct Answer - Option 1 : \(\frac{{\rm{n}}}{{{{\rm{n}}^2} - 1}}{\left( {1 - \frac{1}{{{\rm{si}}{{\rm{n}}^{{\rm{n}} - 1}}\theta }}} \right)^{\frac{{{\rm{n}} + 1}}{{\rm{n}}}}} + {\rm{C}}\) From question, the integration given is: \(I = \smallint \left( {\frac{{{{\left( {{\rm{si}}{{\rm{n}}^n}\;\theta - {\rm{sin\;}}\theta } \right)}^{\frac{1}{n}}}{\rm{cos\;}}\theta }}{{{\rm{si}}{{\rm{n}}^{n + 1}}\theta }}} \right)d\theta\) On putting, sin θ = t ⇒ cos θ dθ = dt Now, \(\Rightarrow I = \smallint \frac{{{{\left( {{t^n} - t} \right)}^{1/n}}}}{{{t^{n + 1}}}}dt\) \(\Rightarrow I = \smallint \frac{{{{\left[ {{t^n}\left( {1 - \frac{t}{{{t^n}}}} \right)} \right]}^{1/n}}}}{{{t^{n + 1}}}}dt\) \(\Rightarrow I = \smallint \frac{{t{{\left( {1 - \frac{1}{{{t^{n - 1}}}}} \right)}^{1/n}}}}{{{t^{n + 1}}}}dt\) \(\Rightarrow I = \smallint \frac{{{{\left( {1 - 1/{t^{n - 1}}} \right)}^{1/n}}}}{{{t^n}}}dt\) On putting, \(\Rightarrow 1 - \frac{1}{{{t^{n - 1}}}} = u\) ∴ 1 – t-(n-1) = u \(\Rightarrow \frac{{\left( {n - 1} \right)}}{{{t^n}}}dt = du\) \(\therefore \frac{{dt}}{{{t^n}}} = \frac{{du}}{{n - 1}}\) On substituting in integral, \(\Rightarrow I = \smallint \frac{{{u^{1/n}}du}}{{n - 1}} = \frac{{{u^{\frac{1}{n} + 1}}}}{{\left( {n - 1} \right)\left( {\frac{1}{n} + 1} \right)}} + C\) \(\Rightarrow I = \frac{{n{{\left( {1 - \frac{1}{{{t^{n - 1}}}}} \right)}^{n + 1}}}}{{\left( {n - 1} \right)\left( {n + 1} \right)}} + C\) \(\left[ {u = 1 - \frac{1}{{{t^{n - 1}}}}{\rm{\;and\;}}t = {\rm{sin}}\theta } \right]\) \(\Rightarrow I=\frac{n{{\left( 1-\frac{1}{\text{si}{{\text{n}}^{n-1}}\theta } \right)}^{\frac{n+1}{n}}}}{{{n}^{2}}-1}+C\) \(\therefore I=\frac{n}{{{n}^{2}}-1}{{\left( 1-\frac{1}{\text{si}{{\text{n}}^{n-1}}\theta } \right)}^{\frac{n+1}{n}}}+C\) |
|
| 2. |
\(\smallint \frac{{{\rm{sin}}\frac{{5{\rm{x}}}}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\)is equal to(where c is a constant of integration.)1. 2x + sin x + 2 sin 2x + C2. x + 2 sin x + 2 sin 2x + C3. x + 2 sin x + sin 2x + C4. 2x + sin x – sin 2x + C |
|
Answer» Correct Answer - Option 3 : x + 2 sin x + sin 2x + C \(I = \smallint \frac{{{\rm{sin}}\left( {\frac{{5{\rm{x}}}}{2}} \right)}}{{{\rm{sin}}\left( {\frac{{\rm{x}}}{2}} \right)}}{\rm{dx}}\) \(= \smallint \frac{{{\rm{sin}}\left( {2x + \frac{x}{2}} \right)}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\) \(= \smallint \frac{{\sin 2x\cos \frac{x}{2} + \cos 2x\sin \frac{x}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\) \(= \smallint \frac{{2\sin x\cos x\cos \frac{x}{2} + \cos 2x\sin \frac{x}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\) [∵ sin 2x = 2 sin x cos x] \(= \smallint \frac{{2\sin x\cos x\cos \frac{x}{2} + \cos 2x\sin \frac{x}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\) \(= \smallint \frac{{2 \times 2\sin \frac{x}{2}\cos \frac{x}{2}\cos x\cos \frac{x}{2} + \cos 2x\sin \frac{x}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\) \(\left[ \because{\sin x = 2\sin \frac{x}{2}\cos \frac{x}{2}} \right]\) \(= \smallint \frac{{4\sin \frac{x}{2}\cos \frac{x}{2}\cos x\cos \frac{x}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}} + \frac{{\cos 2x\sin \frac{x}{2}}}{{{\rm{sin}}\frac{{\rm{x}}}{2}}}{\rm{dx}}\) \(= \smallint \left[ {4\cos x{{\cos }^2}\frac{x}{2} + \cos 2x} \right]{\rm{dx}}\) \(= \smallint \left[ {4\cos x\left( {\frac{{1 + \cos x}}{2}} \right) + \cos 2x} \right]{\rm{dx}}\) \(\left[ \because{\cos \frac{x}{2} = \sqrt {\frac{{1 + \cos x}}{2}} } \right]\) = ∫[2 cos x (1 + cos x) + cos 2x] dx = ∫[2 cos x + 2 cos2 x + cos 2x] dx \(= \smallint \left[ {2\cos x + 2\left( {\frac{{1 + \cos 2x}}{2}} \right) + \cos 2x} \right]{\rm{dx}}\) = ∫[2 cos x + 1 + cos 2x + cos 2x] dx = ∫[2 cos x + 1 + 2 cos 2x] dx \(= 2{\rm{sinx}} + {\rm{x}} + \frac{{2{\rm{sin\;}}2{\rm{x}}}}{2} + {\rm{c}}\) ⇒ x + 2 sin x + sin 2x + c |
|
| 3. |
If\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) and \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3},\)then what are the values of a and b respectively?1. -1, 12. 1, 13. 0, 04. 2, -25. None of these |
|
Answer» Correct Answer - Option 1 : -1, 1 Concept: Integral properties: Consider a function f(x) defined on x.
Given: \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3}\) \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) Let f(x) = x3 F(-x) = -x3 ⇒ f(-x) = - f(x) ∴ f(x) is an odd function. We know that, if f(x) is odd function then,\(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 0\) So, b = -a ----(1) Now,\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3}\) \(\Rightarrow \left[ {\frac{{{{\rm{x}}^3}}}{3}} \right]_{\rm{a}}^{\rm{b}} = \frac{2}{3}\) ⇒ b3 – a3 = 2 ⇒ -a3 – a3 = 2 [Using (1)] ⇒ a3 = -1 ⇒ a = -1 So, b = 1 |
|
| 4. |
The integral\(\;\mathop \smallint \nolimits_{\pi /6}^{\pi /3} {\rm{se}}{{\rm{c}}^{2/3}}x{\rm{cose}}{{\rm{c}}^{4/3}}x\;dx{\rm{\;is}}\)equal to:1. 35⁄6 - 32⁄32. 34⁄3 - 31⁄33. 37⁄6 - 35⁄64. 35⁄3 - 31⁄3 |
|
Answer» Correct Answer - Option 3 : 37⁄6 - 35⁄6 Let, \(I = \mathop \smallint \nolimits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\rm{se}}{{\rm{c}}^{\frac{2}{3}}}x\cdot{\rm{cose}}{{\rm{c}}^{\frac{4}{3}}}\;xdx\) \( = \mathop \smallint \nolimits_{\frac{\pi }{6}}^{\frac{\pi }{3}} \frac{{1.dx}}{{{\rm{co}}{{\rm{s}}^{\frac{2}{3}}}x\cdot{\rm{si}}{{\rm{n}}^{\frac{4}{3}}}x}}\) \(\left[\because {\frac{1}{{cos\theta }} = sec\;\theta \;and\;\frac{1}{{sin\theta }} = cosec\theta } \right]\) \( = \mathop \smallint \nolimits_{\frac{\pi }{6}}^{\frac{\pi }{3}} \frac{{1dx}}{{{\rm{co}}{{\rm{s}}^2}x\cdot{\rm{ta}}{{\rm{n}}^{\frac{4}{3}}}x}} = \mathop \smallint \nolimits_{\frac{\pi }{6}}^{\frac{\pi }{3}} \frac{{{\rm{se}}{{\rm{c}}^2}xdx}}{{{\rm{ta}}{{\rm{n}}^{\frac{4}{3}}}x}}\) Let tanx = u \(I = \mathop \smallint \nolimits_{\frac{1}{{\sqrt 3 }}}^{\sqrt 3 } {u^{ - \frac{4}{3}}}\;du\) \( = \frac{{\left[ {{u^{ - \frac{1}{3}}}} \right]_{\frac{1}{{\sqrt 3 }}}^{\sqrt 3 }}}{{ - \frac{1}{3}}} = \frac{{3\left[ {{u^{ - \frac{1}{3}}}} \right]_{\frac{1}{{\sqrt 3 }}}^{\sqrt 3 }}}{{ - 1}}\) \( = - 3\left[ {{3^{ - \;\frac{1}{6}}} - \frac{1}{{{3^{\frac{{ - 1}}{6}}}}}} \right] = - 3\left( {{3^{\frac{{ - 1}}{6}}} - {3^{\frac{1}{6}}}} \right) = 3\left( {{3^{\frac{1}{6}}} - {3^{\frac{{ - 1}}{6}}}} \right) = \left( {{3^{\frac{7}{6}}} - {3^{\frac{5}{6}}}} \right)\) |
|
| 5. |
Find a + b, if\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{a}\cos 2x - \frac{b}{3}\;{e^{3x}} + C\)where C is the integration constant ?1. 62. 43. 24. None of these |
|
Answer» Correct Answer - Option 1 : 6 CONCEPT:
CALCULATION: Given:\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{a}\cos 2x - \frac{b}{3}\;{e^{3x}} + C\) As we know that,\(\smallint \left[ {f\left( x \right) \pm g\left( x \right)} \right]dx = \;\smallint f\left( x \right)\;dx \pm \;\smallint g\left( x \right)\;dx\) ⇒\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = \smallint \sin 2x\;dx - \;\smallint 4{e^{3x}}\;dx\) As we know that,\(\smallint \sin x\;dx = \; - \cos x + C\)and\(\smallint {e^x}\;dx = {e^x} + C\) ⇒\(\smallint \sin 2x\;dx + \;\smallint 4{e^{3x}}\;dx = - \frac{1}{2} cos \ 2x - \frac{4}{3} e^{3x} + C\) ⇒\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{2} cos \ 2x - \frac{4}{3} e^{3x} + C\) Now, by comparing the above equation with\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{a}\cos 2x - \frac{b}{3}\;{e^{3x}} + C\)we get, ⇒ a = 2 and b = 4 ⇒ a + b = 6 Hence, correct option is 1. |
|
| 6. |
Find a + 3b if\(\smallint \left( {{x^2} - 1} \right)\;dx = \frac{{{x^3}}}{a} + bx + C\)where C is integration constant ?1. 22. 03. 14. None of these |
|
Answer» Correct Answer - Option 2 : 0 CONCEPT:
CALCULATION: Given:\(\smallint \left( {{x^2} - 1} \right)\;dx = \frac{{{x^3}}}{a} + bx + C\) As we know that,\(\smallint \left[ {f\left( x \right) \pm g\left( x \right)} \right]dx = \;\smallint f\left( x \right)\;dx \pm \;\smallint g\left( x \right)\;dx\) ⇒\(\smallint \left( {{x^2} - 1} \right)\;dx = \smallint {x^2}\;dx - \smallint dx \) As we know that,\(\smallint {x^n}\;dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C\) ⇒\(\smallint \left( {{x^2} - 1} \right)\;dx = \frac{{{x^3}}}{3} - x + C\) Now, by comparing the above equation with\(\smallint \left( {{x^2} - 1} \right)\;dx = \frac{{{x^3}}}{a} + bx + C\)we get ⇒ a = 3 and b = - 1 ⇒ a + 3b = 0 Hence, correct option is 2. |
|
| 7. |
A value ofα such that \(\mathop \smallint \nolimits_\alpha ^{\alpha + 1} \frac{{{\rm{d}}x}}{{\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}} = {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left( {\frac{9}{8}} \right)\)is:1. -22. \(\frac{1}{2}\)3. \(- \frac{1}{2}\)4. 2 |
|
Answer» Correct Answer - Option 1 : -2 From question, the equation given is: \(\mathop \smallint \nolimits_\alpha ^{\alpha + 1} \frac{{{\rm{d}}x}}{{\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}} = {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left( {\frac{9}{8}} \right)\) Let’s assume the integral as ‘I’, \(\Rightarrow I = \mathop \smallint \nolimits_\alpha ^{\alpha + 1} \frac{{{\rm{d}}x}}{{\left( {x + \alpha } \right)\left( {x + \alpha + 1} \right)}}\) On putting, t = (x + α), \(\Rightarrow \frac{{dt}}{{dx}} = 1 \Rightarrow dt = dx\) For limits: ⇒ x = α + 1 ⇒ t = 2α + 1 ⇒ x = α ⇒ t = 2α On substituting the integral becomes, \(\Rightarrow I = \mathop \smallint \nolimits_{2\alpha }^{2\alpha + 1} \frac{{{\rm{d}}t}}{{\left( t \right)\left( {t + 1} \right)}}\) On breaking the above integral, \(\Rightarrow I = \mathop \smallint \nolimits_{2\alpha }^{2\alpha + 1} \left( {\frac{1}{t} - \frac{1}{{t + 1}}} \right)dt\) \(\left[ {\smallint \frac{1}{x}dx = {\rm{ln}}\left| x \right| + C} \right]\) \(\Rightarrow I=\left[ \ln \left| t \right|-\ln \left| t+1 \right| \right]_{2\alpha }^{2\alpha +1}\) \(\because \left[ \text{ln}\left( \frac{x}{y} \right)=\text{ln}\left( x \right)-\text{ln}\left( y \right) \right]\) \(\Rightarrow I = \left[ {\ln \left( {\frac{t}{{t + 1}}} \right)} \right]_{2\alpha }^{2\alpha + 1}\) On direct substitution, \(\Rightarrow I = \left[ {\ln \left( {\frac{{2\alpha + 1}}{{2\alpha + 1 + 1}}} \right)} \right] - \left[ {\ln \left( {\frac{{2\alpha }}{{2\alpha + 1}}} \right)} \right]\) From question, \(\Rightarrow \left[ {\ln \left( {\frac{{2\alpha + 1}}{{2\alpha + 1 + 1}}} \right)} \right] - \left[ {\ln \left( {\frac{{2\alpha }}{{2\alpha + 1}}} \right)} \right] = {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left( {\frac{9}{8}} \right)\) \(\Rightarrow \left[ {\ln \left( {\frac{{2\alpha + 1}}{{2\alpha + 2}}} \right)} \right] - \left[ {\ln \left( {\frac{{2\alpha }}{{2\alpha + 1}}} \right)} \right] = {\rm{lo}}{{\rm{g}}_{\rm{e}}}\left( {\frac{9}{8}} \right)\) \(\because \left[ \text{ln}\left( \frac{x}{y} \right)=\text{ln}\left( x \right)-\text{ln}\left( y \right) \right]\) \(\Rightarrow \ln \left( \frac{\left( \frac{2\alpha +1}{2\alpha +2} \right)}{\left( \frac{2\alpha }{2\alpha +1} \right)} \right)=\text{lo}{{\text{g}}_{\text{e}}}\left( \frac{9}{8} \right)\) \(\Rightarrow \ln \left( \frac{2\alpha +1}{2\alpha +2}\times \frac{2\alpha +1}{2\alpha } \right)=\text{lo}{{\text{g}}_{\text{e}}}\left( \frac{9}{8} \right)\) \(\Rightarrow \ln \left( \frac{{{\left( 2\alpha +1 \right)}^{2}}}{2\alpha \left( 2\alpha +2 \right)} \right)=\text{lo}{{\text{g}}_{\text{e}}}\left( \frac{9}{8} \right)\) On cancelling ln and loge, \(\Rightarrow \frac{{{\left( 2\alpha +1 \right)}^{2}}}{2\alpha \left( 2\alpha +2 \right)}=\frac{9}{8}\) ∵ [(a + b)2 = a2 + b2 + 2ab] \(\Rightarrow \frac{4{{\alpha }^{2}}+1+4\alpha }{4{{\alpha }^{2}}+4\alpha }=\frac{9}{8}\) ⇒ 8(4α2 + 1 + 4α) = 9(4α2 + 4α) ⇒ 32α2 + 8 + 32α = 36α2 + 36α ⇒ 36α2 + 36α – 32α2 – 8 – 32α = 0 ⇒ 4α2 + 4α – 8 = 0 ⇒ 4 (α2 + α – 2) = 0 ⇒ α2 + α – 2 = 0 ⇒ α2 – α + 2α – 2 = 0 ⇒ α(α – 1) + 2(α – 1) = 0 ⇒ (α + 2)(α – 1) = 0 ∴ α = -2, 1 The value of α is -2 or 1. From options, -2 is the available answer, so, option (a) is the correct answer. |
|
| 8. |
The integral \(\int \left( \frac{2{{\text{x}}^{3}}-1}{{{\text{x}}^{4}}+\text{x}} \right)\text{dx}\)is equal to:(Here C is a constant of integration)1. \(\frac{1}{2}\text{lo}{{\text{g}}_{\text{e}}}\frac{\left| {{\text{x}}^{3}}+1 \right|}{{{\text{x}}^{2}}}+\text{C}\)2. \(\frac{1}{2}\text{lo}{{\text{g}}_{\text{e}}}\frac{{{\left( {{\text{x}}^{3}}+1 \right)}^{2}}}{\left| {{\text{x}}^{3}} \right|}+\text{C}\)3. \(\text{lo}{{\text{g}}_{\text{e}}}\left| \frac{{{\text{x}}^{3}}+1}{\text{x}} \right|+\text{C}\)4. \(\text{lo}{{\text{g}}_{\text{e}}}\frac{\left| {{\text{x}}^{3}}+1 \right|}{{{\text{x}}^{2}}}+\text{C}\) |
|
Answer» Correct Answer - Option 3 : \(\text{lo}{{\text{g}}_{\text{e}}}\left| \frac{{{\text{x}}^{3}}+1}{\text{x}} \right|+\text{C}\) The given equation is: \(\text{I}=\int \left( \frac{2{{\text{x}}^{3}}-1}{{{\text{x}}^{4}}+\text{x}} \right)\text{dx}\) Now, dividing x2 in numerator and denominator, \(\Rightarrow \text{I}=\int \left( \frac{\left( \frac{2{{\text{x}}^{3}}-1}{{{\text{x}}^{2}}} \right)}{\left( \frac{{{\text{x}}^{4}}+\text{x}}{{{\text{x}}^{2}}} \right)} \right)\text{dx}\) \(\Rightarrow \text{I}=\int \left( \frac{2\text{x}-{{\text{x}}^{-2}}}{{{\text{x}}^{2}}+{{\text{x}}^{-1}}} \right)\text{dx}\) \(\left[ \because \int \left( \frac{\text{{f}'}\left( \text{x} \right)}{\text{f}\left( \text{x} \right)} \right)\text{dx}={{\log }_{\text{e}}}\left( \text{f}\left( \text{x} \right) \right)+\text{C} \right]\) ⇒ I = loge(x2 + x-1) + C \(\Rightarrow \text{I}={{\log }_{\text{e}}}\left( {{\text{x}}^{2}}+\frac{1}{\text{x}} \right)+\text{C}\) \(\therefore \text{I}={{\log }_{\text{e}}}\left( \frac{{{\text{x}}^{3}}+1}{\text{x}} \right)+\text{C}\) |
|
| 9. |
if\(\displaystyle\int\dfrac{\sin x}{\cos (x-a)}dx=Ax+B\log |sec(x-a)|+c\)where A, B and c are real constants then:1. A = sin a, B∈ℝ, c = cos a2. A = cos a, B = sin a, c∈ℝ3. A∈ℝ, B = cos a, c = sin a4. A = sin a, B = cos a, c∈ℝ |
|
Answer» Correct Answer - Option 4 : A = sin a, B = cos a, c∈ℝ Calculation: Given: \(\displaystyle\int\dfrac{\sin x}{\cos (x-a)}dx=Ax+B\log |sec(x-a)|+c\) \(Let = \int\frac{sin\ x}{sin (x - a)}dx\) Put t = x - a Differentiating w. r. t. x ⇒\(\frac{dt}{dx}=\frac{d(x-a)}{dx}\) ⇒\(\frac{dt}{dx}=1\) ⇒\(dx = dt\) ⇒\(\int\frac{sin(t + a)}{sin\ t}dt\) ⇒\(\int\frac{sin\ t\ cos\ a \ +\ cos\ t \ sin\ a}{sin\ t}dt \) \([sin (A+ B)= sin A cosB + cosA sinB]\) ⇒\(\int\frac{sint \ cosa }{sint}+\frac{cost\ sina}{sint}dt\) ⇒\(\int{cos\ a \ dt }+\int{cot \ t\ sina\ dt}\) ⇒\(cos a \int{dt + sin a}+ \int {cot \ t\ dt}\) (since\(sin a, cosa\)are constant) ⇒\(cos a ×t + sin a\ log |sint |+c\) ⇒ putting back t = x - a ⇒\({(x - a)}cos a+sina[sin(x-a)]+ c\) ⇒\(sin a\ log |sin (x-a)+ xcos a- a cosa + c\) ⇒\(sin a\ log|sin(x-a)|+xcosa + c_1\) \((c_1 = - acosa + c)\) |
|
| 10. |
Evaluation of\(\displaystyle\int{\dfrac{1-\tan x}{1+\tan x}}\ dx\)is:1. log (sin x - cos x) + c2. log (sin x - cot x) + c3. log (cos x + sin x) + c4. log (cos x - cot x) + c |
|
Answer» Correct Answer - Option 3 : log (cos x + sin x) + c Concept: \(\displaystyle\int \dfrac{dt}{t}\)= log t + c Calculation:\(\displaystyle∫{\dfrac{1-\tan x}{1+\tan x}}\ dx\) Let's convert tan x into sin x and cos x. \(\Rightarrow \displaystyle\int \dfrac{1-\dfrac{\sin x}{\cos x}}{1+\dfrac{\sin x}{\cos x}}dx\) (∵\(\tan x = \dfrac{\sin x}{\cos x}\) ) \(\Rightarrow \displaystyle\int \dfrac{\dfrac{\cos x-\sin x}{\cos x}}{\dfrac{\cos x + \sin x}{\cos x}}dx\) \(\Rightarrow \displaystyle\int \dfrac{\cos x-\sin x}{{\cos x + \sin x}}\)dx ----(1) Let cos x + sin x = t Differentiating thisequation on both sides, ∴\(\dfrac{\mathrm{d}(\cos x + \sin x)}{\mathrm{d} x}=\dfrac{\mathrm{d} t}{\mathrm{d} x}\) ⇒(-sinx + cosx)dx = dt⇒(cos x - sin x)dx = dt Subsitutingthis value in equation (1), \(\Rightarrow \displaystyle\int \frac{dt}{t}\) (∵\(\displaystyle\int \dfrac{dt}{t}\)= log t + c)⇒ log t + c Subsituting the value of t in this equation, ⇒ log (cosx + sin x) + c Hence,\(\displaystyle∫{\dfrac{1-\tan x}{1+\tan x}}\ dx\)=log (cos x + sin x) + c |
|
| 11. |
Evaluate\(\displaystyle\int \dfrac{1}{1+ sinx } dx\)1. tan x + sec x + c2. sec x - tan x + c3. cot x - sec x + c4. tan x - sec x + c5. cot x - tan x + c |
|
Answer» Correct Answer - Option 4 : tan x - sec x + c Concept: \(\int sec^2x\ dx = tanx\) \(\int sec\ x \ tan\ x \ dx= sec\ x\) Calculation: \(\displaystyle\int \dfrac{1}{1+ sinx } dx= \displaystyle\int \dfrac{1}{1+ sinx } dx \times \dfrac{1-sinx}{1- sinx}\) \(=\displaystyle\int \dfrac{1- sinx }{1- sin^2x } dx= \displaystyle\int \dfrac{1- sinx}{cos^2 } dx\) \(= \displaystyle\int\left[ \dfrac{1}{cos^2x }- \dfrac{sinx}{cos^2 x} dx\right]\) \(= \displaystyle\int(sec^2 x - sec x. tan x ) dx\) = tan x - sec x + c |
|