Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

Statement-1: If `alpha,beta` roots of the equation `18(tan^(-1)x)^(2)-9pi tan^(-1)x+pi^(2)=0 then alpha+beta =(4)/sqrt(3)` Statement-2: `sec^(2)cos^(-1)(1/4)+cosec^(2)sin^(-1)(1/5)=41`A. Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True.

Answer» we have `(tan^(-1)x)^(2)-(pi)/(2)tan^(-1)x+(pi)^(2)/(18)=0`
`rarr (tan^(-1)x)^(2)-((pi)/(6)+(pi)/(3))tan^(-1)x+(pi^(2))/(18)=0 `
`rarr tan^(-1)x=(pi)/(6),(pi)/(3) rarr tan^(-1) alpha =(pi)/(6) and tan^(-1) beta =-(pi)/(3)`
`rarr alpha = tan (pi)/(6) =(1)sqrt(3) and beta =tan (pi)/(3)=sqrt(3) rarr alpha+beta =(4)/sqrt(3)`
`so statement 1 is true
`sec^(2)(cos^(-1)1/4)+cosec^(2)(sin^(-1)1/5)`
`={sec(sec^(-1)4)}^(2)+(cosec^(-1)5)}^(2)=16+25=4`
so statement 2 is true
502.

If `1/2 le x le 1` then `sin^(-1) (3x-4x^(3))` equalsA. `3 sin^(-1) x `B. `pi -3 sin^(-1) x `C. `-pi -3 sin^(-1)x`D. none of these

Answer» Correct Answer - B
503.

if `-1 le x le -1/2 then cos^(-1)(4x^(3)-3x)` equalsA. `3cos^(-1)x`B. `2pi -3cos^(-1)x`C. `-2pi +3 cos^(-1)x`D. none of these

Answer» Correct Answer - C
504.

If` x in (1,oo) then tan^(-1)(2x)/(1-x^(2))` equalsA. `2 tan^(-1)x`B. `-pi+2tan^(-1)x`C. `pi+2 tan^(-1)x`none of theseD.

Answer» Correct Answer - B
505.

If `x in [-1,1] then sin^(-1)((2x)/(1+x^(2)))` equalsA. `2 tan^(-1)x`B. `pi-2 tan^(-1)x`C. `-pi-2 tan^(-1)x`D. none of these

Answer» Correct Answer - A
506.

If `x in (1,oo) then sin^(-1)((2x)/(1+x^(2)))` equalsA. `2 tan^(-1)x`B. `pi-2 tan^(-1)x`C. `-pi-2 tan^(-1)x`D. none of these

Answer» Correct Answer - B
507.

If `x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2)))` equalsA. `2 tan^(-1)x`B. `pi-2 tan^(-1)x`C. `-pi-2 tan^(-1)x`D. none of these

Answer» Correct Answer - C
508.

If `0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2)))` equalsA. `2tan^(-1)x`B. `-2tan^(-1)x`C. `pi-2 tan^(-1)x`D. `pi+2 tan^(-1)x`

Answer» Correct Answer - A
509.

If `-oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))`equalsA. `2tan^(-1)x`B. `-2 tan^(-1)x`C. `pi-2 tan^(-1)x`D. `pi+2tan^(-1)x`

Answer» Correct Answer - B
510.

If `1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2))` equalsA. `2 tan^(-1)x`B. `-pi+2tan^(-1)x`C. `pi+2tan^(-1)x`D. none of these

Answer» Correct Answer - A
511.

Statement -1: if `-1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x` Statement-2: If `-1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))`A. Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True.

Answer» clearly statement -1 true
putting `x =cos theta` we get
`2 sin^(-1) sqrt(1-x)/(2)=2cos^(-1) sqrt(1+x)/(2)=theta =cos^(-1)x`
so statement 2 is also true
512.

If `x lt 0` then `tan^(-1)(1/x)` equalsA. `cot^(-1)x`B. `-cot^(-1)x`C. `-pi + cot^(-1)x`D. `-pi -cot^(-1) x `

Answer» Correct Answer - C
513.

The value of `sin[cot^(-1){cos(tan^(-1) x)}]` isA. `sqrt(x^(2)+2)/(sqrt(x^(2)+1)`B. `sqrt(x^(2)+1)/(sqrt(x^(2)+2)`C. `(x)/sqrt(x^(2)+2)`D. `(1)/sqrt(x^(2)+2)`

Answer» Correct Answer - B
514.

If `x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2))` equalsA. `3 tan^(-1)x`B. `-pi+3tan^(-1)x`C. `pi+3tan^(-1)x`D. none of these

Answer» Correct Answer - C
515.

`1/2tan^(- 1)(12/5)` is equal toA. `tan^(-1)(3/2)`B. `tan^(-1)(2/3)`C. `tan^(-1)(3/4)`D. `tan^(-1)(7/17)`

Answer» Correct Answer - B
516.

If `-(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(2))` equalsA. `3tan^(-1)x`B. `-pi+3 tan^(-1)x`C. `pi+3 tan^(-1)x`D. none of these

Answer» Correct Answer - A
517.

Prove that `sin(3sin^-1(1/3)) = 23/27`

Answer» LHS
`sin(3sin^(-1)(1/3))`
`Let sin^(-1)(1/2)=x`
`sin(3x)=3sinx-4sinn^3x`
`=3*1/3-4(1/3)^3`
`=1-4/27`
`=23/27`
RHS.
518.

If `sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0` then x belongs to the intervalA. `[-1,1]`B. `[-1//sqrt(2),1sqrt(2)]`C. `[-1,-1//sqrt(2)]`D. `[1//sqrt(2),1]`

Answer» Correct Answer - B
519.

`sin^(- 1)(4/5)+2tan^(- 1)(1/3)=`A. `tan^(-1)(3/4)`B. `tan^(-1)(4/3)`C. `tan^(-1)(3/sqrt10)`D. `pi/2`

Answer» Correct Answer - D
520.

The value of `cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))`A. `pi-(x)/(2)`B. `2pi-x`C. `(x)/(2)`D. `2pi-(x)/(2)`

Answer» Correct Answer - A
521.

Prove the following: `cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] = x/2 ; x in(0,pi/4)`

Answer» `sqrt(1+sinx)=sqrt(sin^2(x/2)+cos^2(x/2)+2sin(x/2)cos(x/2)`
`=cos(x/2)+sin(x/2)`
`sqrt(1-sinx)=cos(x/2)-sin(x/2)`
`cot^(-1)((cos(x/2)+sin(x/2)+cos(x/2)-sin(x/2))/(cos(x/2)+sin(x/2)-cos(x/2)+sin(x/2)))`
`cot^(-1)cot(x/2)=x/2`.
522.

The value of x where `xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2)` isA. `sqrt(5)`B. `sqrt(5)/(3)`C. 1D. `2/3`

Answer» We have
`tan(sec^(-1)(1)/(x))=sin(tan^(-1)2)`
`rarr tan^(-1)sqrt(1-x^(2))/(x)=sin(sin^(-1))(2)/sqrt(5)`
`rarr sqrt(1-x^(2))/(x)=(2)/sqrt(5)rarr(1)/(x^(2))-1=4/5`
`rarr(1)/(x^(2))=9/5rarrx=sqrt(5)/(3)`
523.

Express in terms of : `sin^(-1)(2xsqrt(1-x^(2)))` to `sin^(-1)x` for `1gexgt1/(sqrt(2))`A. `2sin^(-1)x`B. `2cos^(-1)x`C. `-2sin^(-1)x`D. `-2cos^(-1)x`

Answer» Correct Answer - B
524.

If `y=cos^(-1)(cos10)` then y is equal to

Answer» We know , `cos^-1 in [0,pi).`
So, we have to find a value from `0` to `pi`.
Now, `cos(2npi-theta) = cos theta`
For `n = 1, theta = 10`,
`(2npi-theta) = (2pi -10) = (2**3.14 - 10) lt 0`
For `n = 2, theta = 10`,
`(2npi-theta) = (4pi -10) = (4**3.14 - 10) lt pi`
So, it is in the range `[0,pi)`.
`:. y = cos^-1(cos10) = cos^-1(cos(4pi-10)) = 4pi-10`
`=> y = 4pi-10`
525.

Find the value of expression: `sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))`A. `14/15`B. `3/4`C. `(2sqrt2)/7`D. `(2sqrt2)/15`

Answer» Correct Answer - A
526.

Find the value of expression: `sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))`A. `12/13`B. `13/14`C. `14/15`D. none of these

Answer» `sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))`
`=sin(sin^(-1)3/5)+cos(cos^(-1)1/3)["before" 2tan^(-1)x=sin^(-1) (2x)/(1+x^(2))]`
`=3/5+1/3=14/15`
527.

Prove that:`cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)`

Answer» `((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))*((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx)))`
`((sqrt(1+sinx)+sqrt(1-sinx))^2/(1+sinx-1+sinx))`
`(1+sinx+1-sinx+2sqrt((1+sinx)(1-sinx)))/(2sinx)`
`(2+2sqrt(1-sin^2x))/(2sinx)`
`(1+cosx)/sinx`
`(1+2cos^2(x/2))/(2cos(x/2)sin(x/2))`
`cot(x/2)`
`cot^(-1)(cos(x/2))`
`=x/2`.
528.

Which of the following angles is greater?`theta_1=sin^(-1)+sin^(-1)1/3ortheta_2=cos^(-1)4/5+cos^(-1)1/3`A. `theta_(1) gt theta_(2)`B. `theta_(1)=theta_(2)`C. `theta_(1) lt theta_(2)`D. none of these

Answer» Correct Answer - C
529.

`tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)`A. `1/2cos^(-1)(3/5)`B. `1/2sin^(-1)(3/5)`C. `1/2tan^(-1)(3/5)`D. `tan^(-1)(1/2)`

Answer» Correct Answer - D
530.

Find `tan^(-1)x/(sqrt(a^2-x^2))`in terms of `sin^(-1)`where `x in (0, a)dot`

Answer» `tan^(-1)(x/sqrt(a^2-x^2))=theta`
`tantheta=x/sqrt(a^2-x^2)`
`sintheta=x/a`
`theta=sin^(-1)(x/a)`.
531.

If `A=2tan^(-1)(2sqrt(2)-1)a n dB=3sin^(-1)(1/3)+sin^(-1)(3/5),`then which is greater.A. A=BB. `A lt B`C. `A gt B`D. none of these

Answer» Correct Answer - C
532.

If `x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3))` , then -A. `x=y^(2)`B. `y^(2)=1-x`C. `x^(2)=(y)/(2)`D. `y^(2)=1+x`

Answer» Correct Answer - B
533.

Show that `sin^(-1)(3/5)-sin^(-1)(8/17)=cos^(-1)(84/85)`

Answer» `sin^(-1)(3/5)=x and sin^(-1)(8/17)=y`
`3/5=sinx and 8/17=siny`
cosx=4/5 and cosy=15/17
cos(x-y)=cosxcosy+sinxsiny
=`(4/5)(15/17)+(3/5)(8/17)`
cos(x-y)=84/85
`x-y=cos^(-1)(84/85)`
`sin^(-1)(3/5)-sin^(-1)(8/17)=cos^(-1)(84/85)`
Hence proved
534.

If `2tan^(-1)x+sin^(-1)(2x)/(1+x^2)`is independent of `x ,`then`x >1`(b) `x

Answer» if|x|`<=`1 then `2tan^(-1)x=sin^(-1)((2x)/(1+x^2))`
If x>1 then `2tan^(-1)x=pi-sin^(-1)((2x)/(1+x^2))`
If x<-1, then `2tan^(-1)x=-pi-sin((2x)/(1+x^2))`
x>1 or x<-1
Option A and B are correct.
535.

If `2tan^(-1)x+sin^(-1)((2x)/(1+x^2) )` is independent of x then :A. `x gt 1`B. `x lt -1`C. `0 lt x lt 1`D. `-1 lt x lt 0`

Answer» Correct Answer - A::B
We know that
if `|x| le 1, " then " 2 tan^(-1) x = sin^(-1) ((2x)/(1 + x^(2)))`
if `x gt 1, " then " 2 tan^(-1) x = pi - sin^(-1) ((2x)/(1 + x^(2)))`
if `x lt -1, " then " 2 tan^(-1) x = - pi - sin^(-1) ((2x)/(1 + x^(2)))`
Hence, the required values are `x lt -1 " or " x gt 1`
536.

If `2tan^(-1)x+sin^(-1)((2x)/(1+x^2) )` is independent of x then :A. `x in [1,oo) in (-oo,-1)`B. `x in [-1,1]`C. `x in (-oo,1]`D. none of these

Answer» Correct Answer - A
537.

Let `alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/(15))`then`cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma``tanalphatanbeta+tanbetatangamma+tanalphatangamma=1``tanalpha+tanbeta+tangamma=tanalphatanbetatangamma``cotalphacotbeta+cotbetacotgamma+cotalphacotgamma=1`A. `cot alpha + cot beta + cot gamma = cot alpha cot beta cot gamma`B. `tan alpha tan beta + tan beta tan gamma + tan alpha tan gamma = 1`C. `tan alpha + tan beta + tan gamma = tan alpha tan beta tan gamma`D. `cot alpha cot beta + cot beta cot gamma + cot alpha cot gamma = 1`

Answer» Correct Answer - A::B
`alpha = sin^(-1).(36)/(85) rArr alpha = (36)/(85) rArr tan alpha = (36)/(77)`
`beta = cos^(-1) ((4)/(5)) rArr cos beta = (4)/(5) rArr tan beta = (3)/(4)`
and `tan gamma = (8)/(15)`
`:. tan (alpha + beta + gamma) = (tan alpha + tan beta + tan gamma - tan alpha tan beta tan gamma)/(1-tan alpha tan beta - tan beta tan gamma - tan gamma tan alpha)`
`= ((36)/(77) + (3)/(4) + (8)/(15) -(36)/(77) .(3)/(4).(8)/(15))/(1-((36)/(77) xx (3)/(4) + (8)/(15) xx (3)/(4) + (8)/(15) xx (36)/(77)))`
`rArr tan (alpha + beta + gamma) = oo`
`rArr alpha + beta + gamma =(pi)/(2)`
`rArr cot alpha + cot beta + cot gamma = cot alpha cot beeta cot gamma`
`rArr tan alpha tan beta + tan beta tan gamma + tan alpha tan gamma = 1`
538.

If `sin^(-1) ((4x)/(x^(2) + 4)) + 2 tan^(-1) (-(x)/(2))` is independent of x, find the value of x

Answer» `E = sin^(-1) ((4x)/(x^(2) + 4)) + 2 tan^(-1) (-(x)/(2))`
`= sin^(-1) ((2 xx (x)/(2))/(((x)/(2))^(2) + 1)) -2 tan^(-1). (x)/(2)`
`= 0` (For E to be independent of x)
`rArr |(x)/(2)| le 1`
or `|x| le 2 " or " -2 le x le 2`
539.

Find the value of `2 cos^(-1).(3)/(sqrt13) + cot^(-1).(16)/(63) + (1)/(2) cos^(-1).(7)/(25)`

Answer» `E = 2 cos^(-1).(3)/(sqrt13) + cot^(-1).(16)/(63) + (1)/(2) cos^(-1).(7)/(25)`
`= 2 tan^(-1).(2)/(3) + tan^(-1).(63)/(16) + (1)/(2) cos^(-1).(7)/(25)`
Now, `2 tan^(-1).(2)/(3) = tan^(-1). (2 ((2)/(3)))/(1 - (4)/(9))`
`= tan^(-1).(12)/(5)`
Let `(1)/(2) cos^(-1).(7)/(25) = tan^(-1) x`
`rArr cos^(-1).(7)/(25) = 2 tan^(-1) x`
`rArr tan^(-1).(24)/(7) = tan^(-1).(2x)/(1 - x^(2))`
`rArr (24)/(7) = (2x)/(1 - x^(2))`
`rArr 12x^(2) + 7x - 12 = 0`
`rArr (4x -3) (3x + 4) = 0`
`rArr x = 3//4`
`:. E = tan^(-1).(12)/(5) + tan^(-1).(63)/(16) + tan^(-1).(3)/(4)`
`= pi + tan^(-1).((12)/(5) + (3)/(4))/(1-((12)/(5)) ((3)/(4))) + tan^(-1).(63)/(16)`
`= pi + tan^(-1) (-(63)/(16)) + tan^(-1).(63)/(16)`
`= pi`
540.

If `cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta` then the maximum of `9x^(2)-12xy costheta + 4y^(2)` isA. 18B. 30C. 24D. 36

Answer» Correct Answer - D
541.

If `(tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8,`then find `xdot`A. `-1`B. 1C. 0D. none of these

Answer» Correct Answer - A
542.

If `sin^(-1)(2x)/(1+x^2)=tan^(-1)(2x)/(1-x^2)`, then find the value of `xdot`

Answer» `sin^(-1).(2x)/(1 + x^(2)) = 2 tan^(-1) x, -1 le x le 1`
`tan^(-1).(2x)/(1 - x^(2)) = 2 tan^(-1) x, -1 lt x lt 1`
Therefore, equation is satisfied by `-1 lt x lt 1`
543.

Find the principal value of `cot^(-1)(-sqrt3)`

Answer» Correct Answer - `(5pi)/6`
544.

Find the principal value of ltrbgt (a) `cosec^(-1) (-1)` (b) `cot^(-1) (-(1)/(sqrt3))`

Answer» Correct Answer - (a) `-(pi)/(2)` (b) `(2pi)/(3)`
(a) Let `theta` be the principal value of `cosec^(-1) (-1)`.
`theta in [-pi//2, pi//2] - {0} and cosec^(-1) (-1) = theta`
`:. theta = -(pi)/(2)` because `-(pi)/(2) in[-(pi)/(2), (pi)/(2)] - {0} and cosec (-(pi)/(2)) = -1`
Therefore, principal value of `cosec^(-1) (-1) " is " -(pi)/(2)`
(b) Let `theta` be the principal vlaue of `cot^(-1) (-(1)/(sqrt3))`
`:. theta in(0, pi) and cot theta = - (1)/(sqrt3)`
`:. theta = pi - (pi)/(3) = (2pi)/(3)`, because `(2pi)(3) in (0, pi) and cot(pi - (pi)/(3)) = - cot (pi)/(3) = -(1)/(sqrt3)`
Therefore, principal value of `cot^(-1) (-(1)/(sqrt3)) = (2 pi)/(3)`
545.

if `6sin^(-1)(x^2 -6x + 8.5)=pi` thenA. `x=1`B. `x=2`C. `x=3`D. `x=4`

Answer» Correct Answer - B::D
546.

If `cos^(-1).(6x)/(1 + 9x^(2)) = -(pi)/(2) + 2 tan^(-1) 3x`, then find the values of x

Answer» `cos^(-1).(6x)/(1 + 9 x^(2)) = -(pi)/(2) + 2 tan^(-1) 3x`
`(pi)/(2) - sin^(-1).(6x)/(1 + 9x^(2)) = -(pi)/(2) + 2 tan^(-1) 3x`
`sin^(-1).(6x)/(1 + 9x^(2)) = pi - 2 tan^(-1) 3x`
`sin^(-1).(2 xx 3x)/(1 + (3x)^(2)) = pi - 2 tan^(-1) 3x`
It is true when `3x gt 1`
or `x gt (1)/(3)`
i.e., `x in ((1)/(3), oo)`
547.

The principal value of `cot^(-1)x` lie inA. `(-pi/2,pi/2)`B. `[-pi/2,pi/2]`C. `(0,pi)`D. `[0,pi]`

Answer» Correct Answer - C
548.

Find the principal value of `sec^(-1)(2/sqrt3)`

Answer» Correct Answer - `pi/6`
549.

Find the principal value of `sin^(-1)(-sqrt3/2)`

Answer» Correct Answer - `-pi/3`
550.

Find the principal value of the following (i) `sin^(-1).(1)/(2)` (ii) `tan ^(-1).(1)/sqrt(3)` (iii) `cot ^(-1)(-sqrt3)`

Answer» Correct Answer - `pi/6`