

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
401. |
If `sin^(-1)(x/5)+cose c^(-1)(5/4)=pi/2`then the value of x is:(1) 1 (2)3 (3) 4(4) 5 |
Answer» `sin^-1(x)=cosec^-1(1/x)` `cosec^-1 5/4= sin^(-1)4/5=0` `sin^-1(x/5)+theta=pi/2` `sin^-1(x/5)+theta=pi/2` `sin^-1(x/5)=pi/2-theta` `x/5=sin(pi/2,-theta)` `x/5=costheta` `x/5=3/5` `x=3` |
|
402. |
If `x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))`A. `sin^(-1)1/2 -sin^(-1)x`B. `sin^(-1)x-(pi)/(6)`C. `sin^(-1)x+(pi)/(6)`D. none of these |
Answer» Let `x=sin theta` then `-1/2lexle1rarr-1/2lesin theta le 1 rarr -(pi)/(6)le theta le (pi)/(2)` Now `sin^(-1)sqrt(3)/(2)x-1/2sqrt(1-x^(2))` `=sin^(-1){sin(theta-(pi)/(6))}` `=theta-(pi)/(6)` `=sin^(-1)x-(pi)/(6)` |
|
403. |
If `x_1, x_2, x_3,a n dx_4`are the roots of the equations `x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0,`prove that `tan^(-1)x_1+tan^(-1)x_2+tan^(-1)x_3+tan^(-1)x_4=npi+(pi/2)-beta`, where `n`is an integer. |
Answer» Given equation is, `x^4-x^3sin2beta+x^2cos2beta - xcosbeta - sinbeta = 0` As `x_1,x_2,x_3 and x_4` are the roots of the above equation. `:. sum x_1 = sin2beta` `sumx_1x_2 = cos2beta` `sumx_1x_2x_3 = cosbeta` `x_1x_2x_3x_4 = -sinbeta` Now, `tan(tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4) = (sumx_1-sum x_1x_2x_3)/(1-sumx_1x_2+x_1x_2x_3x_4)` `=(sin2beta-cosbeta)/(1+cos2beta-sinbeta)` `=(2sinbetacosbeta-cosbeta)/(2sin^2beta - sinbeta)` `=(cosbeta(2sinbeta-1))/(sinbeta(2sinbeta -1))` `=cot beta = tan(pi/2-beta)` `:. tan(tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4) = tan(pi/2-beta)` `:. tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4 = npi+pi/2-beta`, where `n in Z`. |
|
404. |
The value of `cot(cose c^(-1)5/3+tan^(-1)2/3)`is:(1) `6/(17)`(2) `3/(17)`(2) `4/(17)`(4) `5/(17)` |
Answer» `cosec^-1 5/3 = theta_1` `cosec theta_1 = 5/3` `tan^-1 (2/3) = theta_2` `tan theta_2 = 2/3` now, `cot(tan^-1(3/4) + tan^-1 (2/3) )` `= cot(tan^-1((3/4 + 2/3)/(1 - 3/4 * 2/3)))` `= cot(tan^-1((17/2)/(1/2)))` `= cot(tan^-1(17/6))` `= cot theta_3` `= 6/17` option 1 is correct |
|
405. |
`tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3))`is equal to (A) `pi` (B) `-pi/2` (C) 0 (D) `2sqrt(3)` |
Answer» We know, `tan (pi/3) = sqrt(3)` and `cot(5pi/6) = -sqrt(3)` So, putting these values in the given expression `tan^-1(tan(pi/3)) cot^-1(cot((5pi)/6))` `pi/3-(5pi)/6 = -pi/2` |
|
406. |
If `f(x)=sin^(-1)x and lim_(xto1//2+)f(3x-4x^3)=a-3lim_(xto1//2+)f(x)`, then [a] is equal to {where [] denotes G.I.F} |
Answer» Correct Answer - 3 | |
407. |
Find the principal value of: `cot^(-1)(sqrt(3))` |
Answer» As `cot (pi/6) = sqrt3`, we can write our expression as: `cot^-1(cot (pi/6))``=pi/6` which is the required principal value. |
|
408. |
Find the number of positive integral solution of the equation `tan^(-1)x+cos^(-1)(y/(sqrt(1+y^2)))=sin^(-1)(3/(sqrt(10)))` |
Answer» `tan^-1x+cos^-1(y/(1+y^2)) = sin^-1(3/sqrt10)` We will convert this equation in `tan^-1` form. `=> tan^-1x + tan^-1(1/y) = tan^-1 3` `=>tan^-1(1/y) = tan^-1 3 - tan^-1 x` `=>tan^-1(1/y) = tan^-1((3-x)/(1+3x))` `=>1/y = (3-x)/(1+3x)` `=> y = (1+3x)/(3-x)` As, we have to find positive integral values, so `x` can have only two values, `1` and `2`. When `x = 1, y= (1+3)/2 => y= 2` When `x = 2, y= (1+6)/1 => y= 7` So, these are two possible solutions for the given equation. |
|
409. |
Find the domain for `f(x)=sin^(-1)((1+x^2)/(2x))` |
Answer» `f(x) = sin^-1((1+x^2)/(2x))` We know `sin theta` lies between `-1` and `1`. `:. -1 le (1+x^2)/(2x) le 1.` `|1+x^2| le 2x` `=>x^2-2|x| + 1 le 0` `=>(|x| - 1)^2 le 0` `=>|x| = 1` `:. x = -1 or x = 1.` `:.` Domain of `f(x)` will be `x in {-1,1}.` |
|
410. |
If `y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))`, find `(dy)/(dx)`. |
Answer» `x=cos2theta` `1+x=1+cos2theta=2cos^2theta` `sqrt(1+x)=sqrt2costheta` `1-x=1-cos2theta=2sin^2theta` `sqrt(1-x)=sqrt2sintheta` `y=tan^(-1)((sqrt2costheta-sqrt2sintheta)/(sqrt2costheta+sqrt2sintheta))` `=tan^(-1)((costheta-sintheta)/(costheta+sintheta))` `=tan^(-1)((1-tantheta)/(1+tantheta))` `=tan^(-1){tan(pi/4-theta)}` `y=pi/4-theta` diff. with respect to x `dy/dx=d/dx(pi/4-a)=-dy/dx` `-(-1/2)*(1/sqrt(1-x^2))` `=1/(2sqrt(1-x^2)`. |
|
411. |
Find the sum `cos e c^(-1)sqrt(10)+cos e c^(-1)sqrt(50)+cos e c^(-1)sqrt(170)++cos e c^(-1)sqrt((n^2+1)(n^2+2n+2))` |
Answer» Let `S = cosec^-1sqrt10+cosec^-1sqrt50+cosec^-1sqrt170+...+cosec^-1sqrt((n^2+1)(n^2+2n+2))` Here, `T_n = cosec^-1sqrt((n^2+1)(n^2+2n+2))` Let `cosec^-1sqrt((n^2+1)(n^2+2n+2)) = theta` `=>cosec theta = sqrt((n^2+1)(n^2+2n+2))` `=>cosec^2theta = (n^2+1)(n^2+2n+2)` `=>cosec^2theta = (n^2+1)(n^2+1+2n+1)` `=>1+cot^2theta = (n^2+1)(n^2+1)+2n(n^2+1)+n^2+1` `=>1+cot^2theta = (n^2+1+n)^2+1` `=>cot^2theta = (n^2+1+n)^2` `=>tan theta = 1/(1+n^2+n) = ((n+1) - n)/(1+n(n+1))` `=>theta = tan^-1(((n+1) - n)/(1+n(n+1)))` `=>theta = tan^-1(n+1) - tan^-1(n)` `:. T_n = tan^-1(n+1) - tan^-1(n)` Now, `S = tan^-1(2) - tan^-1(1) + tan^-1(3) - tan^-1(2)+tan^-1(4) - tan^-1(3)+...+tan^-1(n+1) - tan^-1(n)` `=>S = tan^-1(n+1) - tan^-1(1)` `=>S = tan^-1(n+1) - pi/4.` |
|
412. |
The sum of series `sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2))`is`tan^(-1)1`(b) `n``tan^(-1)(n+1)`(d) `tan^(-1)(n-1)` |
Answer» Let `S = sec^-1sqrt2+sec^-1(sqrt10/3)+sec^-1(sqrt50/7)+...+sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2)` Here, `T_n = sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2)` Let `sec^-1sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2) = theta` `=>sec theta =sqrt(((n^2+1)(n^2-2n+2))/(n^2-n+1)^2` `=>sec^2theta = ((n^2+1)(n^2-2n+2))/(n^2-n+1)^2` `=>sec^2theta = ((n^2+1)(n^2+1-2n+1))/(n^2-n+1)^2` `=>1+tan^2theta = ((n^2+1)(n^2+1)-2n(n^2+1)+n^2+1)/(n^2-n+1)^2` `=>1+tan^2theta = ((n^2+1-n)^2+1)/(n^2-n+1)^2` `=>1+tan^2theta = 1+1/(n^2+1-n)^2` `=>tan^2theta = 1/(n^2+1-n)^2` `=>tan theta = 1/(1+n^2-n) = (n - (n-1))/(1+n(n-1))` `=>theta = tan^-1((n - (n-1))/(1+n(n-1)))` `=>theta = tan^-1(n) - tan^-1(n-1)` `:. T_n =tan^-1(n) - tan^-1(n-1)` Now, `S = tan^-1(1) - tan^-1(0) + tan^-1(2) - tan^-1(1)+tan^-1(3) - tan^-1(2)+...+tan^-1(n) - tan^-1(n-1)` `=>S = tan^-1(n) - tan^-1(0)` `=>S = tan^-1(n) - 0` `=>S = tan^-1(n)` |
|
413. |
If `f(x) = sin^(-1) (sin ("log"_(2) x))`, then find the value of `f(300)` |
Answer» Correct Answer - `3 pi - "log"_(2) 300` `f(300) = sin^(-1) (sin (log._(2) 300))` `log_(2) 256 = 8 and log_(2) 512 = 9` `:. (log_(2) 300) in (8,9)` `:. Sin^(-1) (sin (log_(2) 300) = sin^(-1) (sin (3pi - log_(2) 300))` `= 3pi - log_(2) 300` |
|
414. |
Find the value of `sin(1/4)cos^(-1)((-1)/9)` |
Answer» Correct Answer - `(1)/(sqrt6)` Let `theta = co^(-1). ((-1)/(9))` `rArr cos theta = (-1)/(9)` `rArr 2 cos^(2). (theta)/(2) = 1 - (1)/(9)` `rArr cos. (theta)/(2) = (2)/(3)` `rArr 1 - 2 sin^(2). (theta)/(4) = (2)/(3)` `rArr 2 sin^(2). (theta)/(4) = (1)/(3)` `rArr sin.(theta)/(4) = (1)/(sqrt6)` (as `(pi)/(2) lt theta lt pi rArr (pi)/(8) lt (theta)/(4) lt (pi)/(4)`) `rArr sin. ((1)/(4) cos^(-1) ((-1)/(9)))) = (1)/(sqrt6)` |
|
415. |
Let `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2))`, where `|x| |
Answer» We have `tan^(-1)y=tan^(-1)x+tan^(-1)(2x)/(1-x^(2))` ltMbrgt `rarr tan^(-1)y=tan^(-1)x+2 tan^(-1)x=3 tan^(-1)x=tan^(-1)(3x-x^(3))/(1-3x^(22))` `rarr y=(3x-x^(3))/(1-3x^(2))` |
|
416. |
Statement -1: If `xin[-1//sqrt(3),1//sqrt(3)]` then `cot^(-1)((3x-x^(3))/(1-3x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2)))rarrx=sqrt(25-10sqrt(5))/(5)` statement -2: `sin18^(@)=sqrt(5-1)/(4) and cos18^(@)=sqrt(10+2sqrt(5))/4 `A. Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
Answer» Clearly statement 2 is true now `cot^(-1)(3x-x^(3))/(1-3x^(2))=cos^(-1)(1-x^(2))/(1+x^(2))` `rarr (pi)/(2) tan^(-1)(3x-x^(3))/(1-3x^(2))=cos^(-1)(1-x^(2))/(1+x^(2))` `rarr (pi)/(2) -3 tan^(-1)x=2 tan^(-1)x` `rarr tan^(-1)x=(pi)/(10)` `rarr x=tana(pi)/(10)=(sin 18^(@))/(cso 18^(@))=(sqrt(5)-1)/(sqrt(10+2sqrt(5))` `rarr x=(sqrt(5)-1sqrt(10-2)sqrt(5))/(sqrt(100-20) rarr x=(sqrt(10-2)sqrt(5)(6-2sqrt(5))/(4sqrt(5))` `rarr x =sqrt(80-32sqrt(5))/(4sqrt(5))=sqrt(5-2sqrt(5))/sqrt(5)=sqrt(25-10)sqrt(5)/(5)` so statement -1 is true Also statemnet -2 is correct explanation for statement -1 |
|
417. |
The sum of series `sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2))`is`tan^(-1)1`(b) `n``tan^(-1)(n+1)`(d) `tan^(-1)(n-1)`A. `tan^(-1) 1`B. `tan^(-1) n`C. `tan^(-1) (n + 1)`D. `tan^(-1) (n -1)` |
Answer» Correct Answer - B `T_(n) = "sec"^(-1) sqrt(((n^(2) +1) (n^(2) -2n + 2))/((n^(2) -n +1)^(2)))` `rArr sec^(2) T_(n) = ((n^(2) + 1) (n^(2) -2n + 2))/((n^(2) -n + 1)^(2))` `rArr sec^(2) T_(n) = ((n^(2) +1)^(2) + (n^(2) +1) -2n(n^(2) + 1))/((n^(2) - n+ 1)^(2))` `rArr sec^(2) T_(n) = (1 + (n^(2) + 1 -n)^(2))/((n^(2) -n + 1)^(2))` `rArr tan T_(n) = (1)/(n^(2) -n + 1)` `rArr tan T_(n) = (n -(n -1))/(1 + n(n -1)) = tan^(-1) n - tan^(-1) (n -1)` `:. S = T_(1) + T_(2) + T_(3) +..+ T_(n)` `:. S = tan^(-1) n` |
|
418. |
If `-1 le x le 0` then `cos^(-1)(2x^(2)-1)` equalsA. `2 cos^(-1)x`B. `pi-2 cos^(-1)x`C. `2pi-2 cos^(-1)x`D. `-2 cos^(-1)x` |
Answer» Correct Answer - D | |
419. |
If `sin(sin^(-1)1/5+cos^(-1)x)` =1 then x is equal toA. 1B. 0C. `4//5`D. `1//5` |
Answer» Correct Answer - D | |
420. |
If `(1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x, " then " x =`A. `tan 3 theta`B. `3 tan theta`C. `(1//3) tan theta`D. `3 cot theta` |
Answer» Correct Answer - C `(1)/(2) sin^(-1).(3 sin 2 theta)/(5 + 4 cos 2 theta) = tan^(-1) x` `rArr sin^(-1).((6 tan theta)/(1 + tan^(2) theta))/(5 + 4 ((1-tan^(2) theta)/(1 + tan^(2) theta))) = sin^(-1).(2x)/(1 + x^(2))` `rArr sin^(-1).(6 tan theta)/(9 + tan^(2) theta) = sin^(-1).(2x)/(1 + x^(2))` `rArr sin^(-1).(2((tan theta)/(3)))/(1 + ((tan theta)/(3))^(2)) = sin^(-1).(2x)/(1 + x^(2))` `rArr x = (tan theta)/(3)` |
|
421. |
If `-1/2 le x le 1/2` hence `sin^(-1)(3x-4x^(3))` equalsA. `3 sin^(-1)x`B. `pi-3 sin^(-1)x`C. `-pi - 3 sin^(-1)x`D. none of these |
Answer» Correct Answer - D | |
422. |
Value of x satisfying ` tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))`A. `pm sqrt(5)/(3)`B. `pm (3)/sqrt(5)`C. `pm sqrt(3)/(5)`D. `pm 3/5` |
Answer» We have `tan(sec^(-1)x)=sin(cos^(-1)(1)/sqrt(5))` `rarr sqrt(sec^(2)(sec^(-1)x)-1)=sin(sin^(-1))(2)/sqrt(5)` `rarr sqrt(x^(-1))=(2)/sqrt(5)rarrx=pm (3)/sqrt(5)` |
|
423. |
Statement -1: If `xltsqrt(e )`then `cot^(-1){log(e//x^(2))/log(ex^(2))}+cot^(-1){log(ex^(4))/log(e^(2)//x^(2)))}=pi-tan^(-1)3` statement 2:`tan^(-1)(x+y)/(1-xy)=tan^(-1)x+tan^(-1)y if xylt1`A. Statement-1 is is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
Answer» statement 2 is true (see history ) Now `cot^(-1){log(e//x^(1))/log(ex^(2))}+cot^(-1){logex^(4))/log(e^(2)//x^(2)))}` `=cot^(-1){(1-2logx)/(1+2 logx)}+cot^(-1){(1+4logx)/(2-2logx)}` `=tan^(-1)(1+2 logx)/(1-23logx)+(pi)/(2)tan^(-1)((1/2+2logx)/(1-1/2xx2logx)` `=tan^(-1)(1+2logx)/(1-2logx)+(pi)/(2)-tan^(-1)((1/2+2logx)/(1-1/2xx2logx))` `=tan^(-1)(1)+tan^(-1)(2 logx)+(pi)/(2)-tan^(-1)1/2-tan^(-1)(2 logx)` if `2 log x l 1 and log x lt 1` `=(3pi)/(4) -tan^(-1)1/2 if x lt sqrt(e )` `=pi -(tan^(-1)1+tan^(-1)1/2)=pi tan^(-1)3` So statement 1 is alos true also statement -2 is a correct explanation fro statement-1 |
|
424. |
If `A=tan^(-1) x ,x in R` then the value of sin 2A isA. `(2x)/(1-x^(2))`B. `(2x)/sqrt(1-x^(2))`C. `(2x)/(1+x^(2))`D. `(1-x^(2))/(1+x^(2))` |
Answer» Correct Answer - C | |
425. |
If `sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x` then `x=`A. `(a - b)/(1 + ab)`B. `(b)/(1 + ab)`C. `(b)/(1 - ab)`D. `(a + b)/(1 - ab)` |
Answer» Correct Answer - D Since `sin^(-1) ((2x)/(1 + x^(2))) = 2 tan^(-1) x " for " x in (-1, 1)` `sin^(-1) ((2a)/(1 + a^(2))) + sin^(-1) ((2b)/(1 + b^(2))) = 2 tan^(-1) x` `rArr 2 tan^(-1) a + 2 tan^(-1) b = 2 tan^(-1) x` or `tan^(-1) a + 2 tan^(-1) b = 2 tan^(-1) x` or `tan^(-1) ((a + b)/(1 -ab)) = tan^(-1) x` or `x = (a + b)/(1 - ab)` |
|
426. |
If `|a|lt1| b|lt1and|x|lt1` then the solution of `sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2)))` isA. `(a-b)/(1-ab)`B. `(1+ab)/(a-b)`C. `(ab-1)/(a+b)`D. `(a-b)/(a+ab)` |
Answer» We have `sin^(-1)(2a)/(1+a^(2))-cos^(-1)(1-b^(2))/(1+b^(2))=tan^(-1)(2x)/(1-x^(2))` `rarr 2tan^(-1)a-2tan^(-1)b=2tan^(-1)x` `rarr tan^(-1)a-tan^(-1)b=tan^(-1)x` `rarr tan^(-1)x=tan^(-1)(a-b)/(1+ab)` `rarr x=(a-bb)/(1+ab)` |
|
427. |
The value of `sin^(-1)`(sin 10) isA. 10B. `10-3pi`C. `3pi-10`D. none of these |
Answer» Correct Answer - C | |
428. |
The value of `"tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(-1)x))),w h e r ex in (0,1),`is equal to0 (b) 1(c) `-1`(d) none of these |
Answer» we have `cos(sin^(-1)x)=sqrt(1-x^(2)) and sin cos^(-1)x=sqrt(1-x^(2))` `therefore tan{sin^(-1)(cos sin^(-1)x)}tan{cos^(-12)(sin(cos^(-1)x)}` `=tan{sin^(-1)sqrt(1-x^(2))}tan{cos^(-1)sqrt(1-x^(2))` `=tan(sin^(-1)sqrt(1-x^(2))tan{(pi)/(2)-sin^(-1)sqrt(1-x^(2))=1` `=tan(sin^(-1)sqrt(1-x^(2))cot(sin^(-1))sqrt(1-x^(2))=1` |
|
429. |
`sec^(-1)(sin x)` exist ifA. `x on (-oo,oo)`B. `x in [-1,1]`C. `x=(2n+1)(pi)/(2),x in Z`D. `x=npi , x in z` |
Answer» Correct Answer - C | |
430. |
`[cot^(-1)x][cos^(-1) x]` =0 where x is non negative and [.] is he greatest integer function then the value of x is / areA. (cos1,1]B. (cos 1, cos 1)C. (cot 1,1]D. none of these |
Answer» Correct Answer - C | |
431. |
In any triangle ABC `sum (sin^2A+sinA+1)/sinA` is always greater than or equal |
Answer» In triangle ABC, `sum (sin^2A + sin A+1)/sinA = (sin^2A + sin A+1)/sinA+ (sin^2B + sin B+1)/sinB+ (sin^2C + sin C+1)/sinC` `=sinA+1/sinA+sinB+1/sinB+sinC+1/sinC+3` As, `sin theta` in any triangle is always greater than `0`. `:. sin theta + 1/sin theta ge 2`. `:. sinA+1/sinA+sinB+1/sinB+sinC+1/sinC ge6 ``=>sinA+1/sinA+sinB+1/sinB+sinC+1/sinC+3 ge 9` Thus, `sum (sin^2A + sin A+1)/sinA ge 9`. |
|
432. |
The value of `tan^(-1)1+tan^(-1)2+tan^(-1)3` is |
Answer» Correct Answer - C | |
433. |
Find the following values : (a) `tan^(1) tan.(13pi)/(5)` (b) `sec^(-1) sec.(13pi)/(3)` (c) `sin^(-1) sin.(33pi)/(5)` (d) `sin^(-1) (sin 8)` (e) `tan^(-1) (tan 10)` (f) `sec^(-1) (sec 9)` (g) `cot^(-1) (cot 6)` (h) `cosec^(-1) (cosec 7)` |
Answer» Correct Answer - (a) `-(2pi)/(5)` (b) `(pi)/(3)` (c) `(2pi)/(5)` (d) `3 pi -8` (e) `10 - 3 pi` (f) `9 - 2pi` (g) `6 - pi` (h) `7 - 2pi` (a) `tan^(-1) tan. (13 pi)/(5) = tan^(-1) tan {3pi + (-(2pi)/(5))}` `= tan^(-1) tan.(-(2pi)/(5))` `= -(2pi)/(5)` (b) `sec^(-1) sec. (13pi)/(3) = sec^(-1) sec.(3pi + (pi)/(3))` `= sec^(-1) sec. (pi)/(3)` `= (pi)/(3)` (c) `sin^(-1) sin.(33 pi)/(5) = sin^(-1) sin. (7 pi - (2pi)/(5))` `= sin^(-1) sin. (2pi)/(5) = (2pi)/(5)` (d) `sin^(-1) (sin 8) = sin^(-1) (sin (3pi -8)) = 3 pi -8` (e) `tan^(-1) (tan 10) = tan^(-1) (tan(10 - 3 pi)) = 10 - 3 pi` (f) `sec^(-1) (sec 9) = sec^(-1) (sec(9 - 2pi)) = 9 - 2pi` (g) `cot^(-1) (cot 6) = cot^(-1) (cot(6 - pi)) = 6 - pi` (h) `cosec^(-1) (cosec7) = cosec^(-1) (cosec(7 - 2 pi)) = 7 - 2pi` |
|
434. |
The value of `cot(pi/4-2 cot^(-1)3)` isA. 1B. 7C. -1D. none of these |
Answer» Correct Answer - B | |
435. |
The value of `tan[cos^(-1)(4/5)+tan^(-1)(2/3)]`is`6/(17)`(b) `7/(16)`(c) `(16)/7`(d) none of these |
Answer» LHS `tan[tan^(-1)3/4+tan^(-1)2/3]` `tan[tan^(-1)((3/4)+(2/3))/(1-(3/4)(2/3))]` `tan[tan^(-1)(17/6)]` `=17/6`. |
|
436. |
If `tan^(-1)a+tan^(-1)b+tan^(-1)c=pi` then prove tjhat `a+b+c=abc`A. a+b+c=abcB. ab+bc+ca=abcC. `(1)/(a)+(1)/(b)+(1)/(c )-(1)/(abc)=0`D. `ab+bc+ca=a+b+c` |
Answer» Correct Answer - C | |
437. |
The value of `sin^(-1)[cos((33pi)/5)]` isA. `(3pi)/(5)`B. `(7pi)/(5)`C. `(pi)/(10)`D. `(-pi)/(10)` |
Answer» Correct Answer - D | |
438. |
Find the real values of x for which the function `f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x)` is defined |
Answer» Correct Answer - `x = 0, -3` We have `f(x) = cos^(-1) sqrt(x^(2) + 3x + 1) + cos^(-1) sqrt(x^(2) + 3x)` We must have `0 le x^(2) + 3x + 1 le 1 and 0 le x^(2) + 3x le 1` `rArr x^(2) + 3x = 0` `rArr x = 0, -3` |
|
439. |
Find the value of x for which `sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1` |
Answer» Correct Answer - `cos sin 1 lt x lt cos cos 1` We have `sin^(-1) (cos^(-1) x) lt 1` `rArr -(pi)/(2) le sin^(-1) (cos^(-1) x) lt 1` `rArr - 1 le cos^(-1) x lt sin 1` `rArr 0 le cos^(-1) x lt sin 1` `rArr cos (sin 1) lt x le 1`..(i) Also, `cos^(-1) (cos^(-1) x) lt 1` `rArr 0 le cos^(-1) (cos^(-1) x) lt 1` `rArr cos 1 lt cos^(-1) x le 1` `rArr cos 1 le x lt cos (cos 1)`....(ii) `rArr cos 1 lt cos (sin 1)` Hence, from (i) and (ii), we have `cos (sin 1) lt x lt cos (cos 1)` |
|
440. |
The value of `cot[cos^(-1)(7/25)]` isA. `25/24`B. `25/7`C. `24/25`D. none of these |
Answer» Correct Answer - D | |
441. |
The value of `cot(c o s e c^(- 1)5/3+tan^(- 1)(2/3))i s`A. `4/17`B. `5/17`C. `6/17`D. `3/17` |
Answer» Correct Answer - C | |
442. |
The value of `tan[cos^(-1)(4/5)+tan^(-1)(2/3)]`is`6/(17)`(b) `7/(16)`(c) `(16)/7`(d) none of theseA. `6/17`B. `7/16`C. `17/6`D. none of these |
Answer» Correct Answer - C | |
443. |
The equation `sin^-1x-cos^-1x=cos^-1(sqrt3/2)` hasA. no solutionB. unique solutionC. infinite number of solutionD. none of these |
Answer» Correct Answer - B | |
444. |
Find the smallest and the largest values of `tan^(-1) ((1 - x)/(1 + x)), 0 le x le 1`A. `0,pi`B. `0,(pi)/(4)`C. `-(pi)/(4),(pi)/(4)`D. `(pi)/(4),(pi)/(2)` |
Answer» Correct Answer - B | |
445. |
Find the smallest and the largest values of `tan^(-1) ((1 - x)/(1 + x)), 0 le x le 1` |
Answer» Correct Answer - `[0, (pi)/(4)]` `f(x) = tan^(-1).((1 - x)/(1 + x)), 0 le x le 1` ltbr gt Now `(1 - x)/(1 + x) = (2)/(1 + x) - 1` Given `0 le x le 1`, `rArr (2)/(1 + x) -1 in [0,1]` `rArr tan^(-1).((1 - x)/(1 + x)) in [tan^(-1) 0, tan^(-1) 1] " or " [0, (pi)/(4)]` |
|
446. |
Find all possible values of x and y for which `cos^(-1)sqrtx+cos^(-1)sqrt(1-x)+cos^(-1)sqrt(1-y)=((3pi)/4)` |
Answer» `cos^(-1)sqrtx=cos^(-1)sqrt(1-x)=cos^(-1)sqrtx+sin^(-1)sqrtx=pi/2` The given equation can be rewritten as `pi/2+cos^(-1)sqrt(1-y)=(3pi)/4` `rArr cos^(-1)sqrt(1-y)=pi/4` `sqrt(1-y)=1/sqrt2` `rArr 1-y=1/2` `rArry=1-1/2=1/2` For `cos^(-1)sqrtx` to be defined `-1 le sqrtx le 1` But `sqrtx` by definition, is non-negative i.e., `sqrtx ge0` Combining the two `0 le sqrtx le 1i.e., 0 le xle1` Thus the possible values of x, y are `0 le x le 1, y=1/2` |
|
447. |
The number of solution of equation `sin^(-1)x+nsin^(-1)(1-x)=(mpi)/2,w h e r en >0,mgeq0,`is3 (b)1 (c) 2(d) None of theseA. 3B. 1C. 2D. none of these |
Answer» Correct Answer - D `sin^(-1) x` is defined if `-1 le x le 1 and sin^(-1) (1- x)` is defined if `- 1 le 1 -x le 1 rArr 0 le x le 2` Therefore, `sin^(-1) x + n sin^(-1) (1 -x)` is defined if `0 le x le 1` when `0 le x le 1, " also " 0 le 1 - x le 1`. So, `0 le sin^(-1) x le (pi)/(2) and 0 le sin^(-1) (1-x) le (pi)/(2)` `L.H.S. ge 0 and R.H.S. le 0` Which equally holds if L.H.S. = R.H.S. = 0 But L.H.S. `= 0 " if " sin^(-1) x and n sin^(-1) (1 -x)` are simultaneously zero, which is not possible |
|
448. |
The value of `sin^(-1) (sin 12) + cos^(-1) (cos 12)` is equal toA. zeroB. `24 - 2pi`C. `4pi -24`D. none of these |
Answer» Correct Answer - A `sin^(-1) (sin 12) + cos^(-1) (cos 12)` `= sin^(-1) (sin (12 - 4pi)) + cos^(-1) (cos (4 pi - 12))` `= 12 - 4pi + 4pi - 12 = 0` |
|
449. |
`sin^(-1)(3/5)+tan^(-1)(1/7)=`A. `(pi)/(4)`B. `(pi)/(2)`C. `cos^(-1)(4/5)`D. `pi` |
Answer» Correct Answer - A | |
450. |
Prove the following : `sin^(-1)4/5+2 tan^(-1)1/3=pi/2`A. `(pi)/(3)`B. `(pi)/(4)`C. `(pi)/(4)`D. 0 |
Answer» Correct Answer - C | |