Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

How ` CO_2 ` makes idies puffy ?

Answer» Idlies puffy. The microoganismslike species of Bacillus, Candiada and Saccharomyces areincolved in making idlies.
52.

Find k, if one of the lines given by `6x^(2) + kxy + y^(2) = 0` is `2x + y = 0`.

Answer» Let `m_(1)` be the slope of `2x+y=0`
`m_(1)=-2`
Now, comparing `6x^(2)+kxy+y^(2)=0`
we get,
`a=6h=k/2,b =1`
`thereforem_(1)+m_(2)=(-2h)/(b)=-k`
`therefore -2+m_(2)=-kimpliesm_(2)=2-k`
Now `m_(1)*m_(2)=a/b`
`(-2)(2-k)=6/1`
`-4+2k=6`
`k=5`
53.

Evaluate : `int_(0)^(pi)(x)/(a^(2)cos^(2)x+b^(*2)sin^(2)x)dx`

Answer» We have, `I =underset(0)overset(pi)int(x)/(a^(2)cos ^(2)x+b^(2)sin^(2)x)dx" "...(1)`
`I =underset(0)overset(pi)int(pi-x)/(a^(2)cos^(2)(pi-x)+b^(2)sin^(2)(pi-x))dx`
`(because underset(o)overset(a)intf(x)dt=underset(o)overset(a)intf(a-x)dx)`
`I=underset(o)overset(pi)int(pi-x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx" "...(2)`
On adding equations (1) a nd (2), we get
`21 =underset(0)overset(pi)int(x+pi-x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx`
Using the property, `underset(0)overset(pi)intf(x)*dx=underset(0)overset(pi)int[f(x)+(2a-x)]dx`
`therefore2I=pi[underset(0)overset(pi)int(1)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx+underset(0)overset(pi//2)int(1)/(a^(2)cos^(2)(pi-x)+b^(2)sin^(2)(pi-x))dx]`
`I=pi underset(0)overset(pi//2)int(dx)/(a^(2)cos^(2)x(1+(b^(2))/(a^(2))tan^(2)x))`
`=(pi)/(a^(2))underset(0)overset(pi//2)int(sec^(2)x dx)/(1+(b^(2))/(a^(2))tan^(2)x)`
[By putting `u=b/atanx, du =b/asec^(2)x dx` when `x=0, u=0`
when `x=pi/2, u=oo`
`=(pi)/(a^(2))underset(0)overset(oo)int((a)/(b)du)/(a+u^(2))`
`=(pi)/(ab)underset(0)overset(oo)int(du)/(1+u^(2))=(pi)/(ab)[tan^(-1)(u)]_(0)^(oo)+c`
`=(pi)/(ab)[tan^(-1),ootan^(-1)0]+c`
`=(pi)/(ab)[(pi)/(2)-0]+c`
`=(pi^(2))/(2ab)`
54.

Prove that : `intsqrt(a^(2)-x^(2))dx=x/2sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))+c`

Answer» Let `I=intsqrt(a^(2)-x^(2))dx`
Intergrating by parts
`I=sqrt(a^(2)-x^(2))int1dx-int[(d)/(dx)(sqrt(a^(2)-x^(2)))*int1dx]dx`
`=xsqrt(a^(2)-x^(2))-int(-2x)/(2sqrt(a^(2)-x^(2)))x*dx`
`=xsqrt(a^(2)-x^(2))-int[sqrt(a^(2)-x^(2))-(a^(2))/(sqrt(a^(2)-x^(2)))dx`
`=x*sqrt(a^(2)-x^(2))-int[sqrt(a^(2)-x^(2))-(a^(2))/(sqrt(a^(2)-x^(2)))]dx`
`=xsqrt(a^(2)-x^(2))-I+a^(2)*sin^(-1)((x)/(a))+c_(1)`
`2I=xsqrt(a^(2)-x^(2))+a^(2)*sin^(-1)((x)/(a))+c_(1)`
`I=x/2sqrt(a^(2)-x^(2))+(a^(2))/(2)*sin^(-1)((x)/(a))+c_(1)`
`therefore intsqrt(a^(2)-x^(2))dx=(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))+c`
where, `c=(c_(1))/(2)*`
55.

The probability that a person who undergoes kidney operation will recover is 0.5. Find the probability that of six patients who undergo similar operations. (a) Non will recover. (b) Half of them will recover.

Answer» Since there are six patients, `n=6.` If a patient recovers, the outcome is a success.
Thus, `P=p` (success) `=0.5and q=1-p=0.5`
Let X: No. of patents, who recovered out of 6. Then `X~B(n=6,p=0.5)`
The p.m.f. of X is given as,
`P(X=x)=p(x) ""^(6)C_(x)(0*5)^(x)(0*3)^(6-x), x=0, 1,2,3,4,5,6.`
(i) Probability (non will reconver) `=P (X=0)`
`=""^(6)C_(0)(0*5)^(0)(0.5)^(6)`
`=(1)*(1)*(0*5)^(6)`
`=0*015625`
(ii) Probability (half of them will recover)=P `(X=3)`
`=""^(6)C_(3)(0*5)^(3)(0*5)^(3)`
`=20xx0*125xx0*125=0*3125`
56.

Evaluate: `int (sinx)/(sqrt(36-cos ^(2)x))dx`

Answer» We have, `int (sinx)/(sqrt(36-cos^(2)x))dx`
Let `cos x=t implies-sin x dx =dt`
Putting `sin x dx=-dt and cos x=t.`
`=-int (dt)/(sqrt(36-t^(2)))`
`=-int(dt)/(sqrt((6)^(2)-t^(2)))`
`=-sin^(-1)((t)/(6))+c`
`=-sin ^(-1)((cos x)/(6))+c`
`[becauset=cosx]`
57.

`cos^(-1)(2xsqrt(1-x^(2)))`

Answer» Let `y=cos ^(-1)(2xsqrt(1-x^(2)))`
Put ` x=sin theta`
`thereforetheta=sin^(-1)x `
`y=cos^(-1)(2sinthetasqrt(1-sin^(2)theta))`
`y=cos^(-1)(2sin thetacostheta)`
`y=cos^(-1)(sin 2theta)`
`y=cos ^(-1)[cos ((pi)/(2)-2theta)]`
`y=pi/2-2theta`
`y=pi/2-2sin ^(-1)x`
`therefore (dy)/(dx)=(-2)/(sqrt(1-x^(2)))`
58.

The probability distribution of a discrate random variable X is : `{:(X=x, 1,2,3,4,5),(P(X=x),k,2k,3k,4k,5k):}` Find `P (X le 4).`

Answer» Here, we must have `k+2k+3k+4k+5k=1`
`15k=1`
`k=1/15`
Now, `P (Xle4)=k+2k+3k+4k`
`=1/15+2/15+3/15+4/15=10/15`
`therefore P(Xle4)=2/3`
59.

Find the coordinates of the foot of theperpendicular drawn from the point `A(1,2,1)`to the line joining `B(1,4,6)a n dC(5,4,4)dot`

Answer» The equation of a line joining the points P (1,4, 6) and (5,4,4) is
`(x-1)/(5-1)=(y-4)/(4-4)=(z-6)/(4-6)`
`(x-1)/(4)=(y-4)/(0)=(z-6)/(-2)" "...(1)`
Let M be the foot of the perpendicular drawn from the point `(1,2,1).`
Coordinates of M are given by
`(x-1)/(4)=(y-4)/(0)=(z-6)/(-2)=lamda`
`x=4lamda+1, y=0lamda+4, z=-2lamda+6`
`therefore M-=(4lamda+1,4,-2lamda+6)" "...(2)`
The direction ratios of AM are `4 lamda+1-1,4-2,-2lamda+6-1`
i.e., `4lamda,2,-2lamda+5`
Direction ratios of given line are `4,0,-2,` since AM is perpendicular to the given line
`therefore4(4lamda)+0(2)+(-2)(-2lamda+5)=0`
`therefore 16lamda+4lamda-10=0`
`therefore lamda=1/2`
Putting `lamda=1/2` in equation (2), we get
`M-=(3,4,5)`
Hence, the co-ordinates of the foot of the perpendicular are `(3,4,5)`
60.

Solve the differential equation `cos (x+y) dy=dx.` Hence find the particular solution for `x=0 and y=0.`

Answer» The given differential equartion is
`(dy)/(dx)=(1)/(cos (x+y))" "...(1)`
Let `x+y=v`
`1+(dy)/(dx)=(dv)/(dx)`
`(dy)/(dx)=(dv)/(dx)-1`
Substituting `(dy)/(dx)` in equation (1), we get
`(dv)/(dx)-1=(1)/(cos v)`
`(dv)/(dx)=(1+cos v)/(cos v)`
`therefore` Integrating
`int(cos v dv)/(1+cos v)dv=intdx+c`
`int(1+cos v)/(1+cos v)dv-int(1)/(a+cos v)dv=intdx+c`
`int 1dv-int(1)/(2cos^(2)""(v)/(2))dv=x+c`
`v-1/2intcos^(2)""(v)/(2)dv=x+c`
`v-tan""(v)/(2)=x+c`
`(x+y)-tan((x+y)/(2))=x+c" "...(2)`
which is the required general solution of the given equation.
For `x=0 and y=0,` equation (2), becomes,
`(0+0)-tan((0)/(2))=0+c`
`impliesc=0`
Putting the value of c in equation (2), we get
`x+y-tan((x+y)/(2))=x`
`impliesy=tan ((x+y)/(2))`
61.

Find the general solution for each of the following equation: `sin x + sin 3x + sin 5x = 0`

Answer» We have, `sin x+sin 3x+sinn 5x=0`
`therefore (sin x+sin 5x) +sin 3x=0`
`therefore 2 sin ((x+5x)/(2))cos ((5x-x)/(2))+sin3x=0`
`therefore2 sin 3x cos 2x+sin 3x=0`
`therefore sin3x(2 cos2x+1) =0`
Either `sin 3x=0 or 2 cos 2x+1=0`
i.e., `sin 3x=0 or cos 2x=-1/2`
Now, `cos 2x=-cos ""(pi)/(2)`
`cos 2x=cos(pi-(pi)/(3))`
`cos 2x=cos ""(2pi)/(3)`
`therefore sin 3x=0or cos 2x=cos ""(2pi)/(3)`
`3pi=npi, n ne Zor 2x=2mpipm(2pi)/(3)` where` m inZ`
Hence, `x=(npi)/(3)or x=mpipm (pi)/(3), wheren, m in Z`
62.

The following is the p.d.g. (Probability Density Function) of a continuous random varible X: `f(x)=(x)/(32), 0ltxlt8 =0,` otherwise (a) Find following the expression for c.d.f. (Cumulative Distribution Function) of X. (b) Also find its value at `x=0.5 and 9.`

Answer» (a) c.d.f. of a continous random variable X is given by
`f(x)=underset(-oo)overset(x)intf(y)dy`
`therefore f(x)=underset(0)overset(x)intf(y)dy=underset(0)overset(x)int(y)/(32)dy`
`=[(y^(2))/(64)]_(0)^(x)=(x^(2))/(64)`
Thus , `F(x)=(x^(2))/(64),x inR.`
(b) Values of `F(x)` at different values of x.
At `x=0.5,F(x)=F(0.5)=((0.5)^(2))/(64)=(0.25)/(64)=(1)/(256)`
For any value ofx greater than or equal to `8.F(x)=1`
`therefore F(9)=1`
63.

If `y=x^(x), "find" (dy)/(dx).`

Answer» We have, `y=x^(2)`
`therefore log y=x log x`
On differentiating w.r.t. x, we get
`1/y (dy)/(dx)=x/x +log x` `(dy)/(dx)=y+ylog x`
`(dy)/(dx)=x^(x)(1+logx)`
`(becaue y=x^(3))`
64.

If the function `f(x)={{:(k +x, "for " x lt1),(4x+3, "for " x ge1):} ` is continuous at `x=1` then `k=`A. 7B. 8C. 6D. -6

Answer» f (x) is continuous at `x=1.`
`therefore underset(x to 1)lim f(x) underset(x to 1^(+))lim f(x)=f" "...(1) `
Hence `underset(x to 1 ^(-1))lim (k+x)=underset(x to 1^(+))lim(4x+3)`
`therefore k+1=4(1)+3`
`k=7-1`
`k=6`
Hence, the correct answer from the given alternative is (c ).
65.

Given that X ~ B( n=10, p) .If E (x) = 8, find the value of p .A. `0.6`B. `0.7`C. `0.8`D. `0.4`

Answer» Given, `X~B(n=10,P).`
`E(X)=8`
`E(X)=nP`
`therefore nP=8`
`10P=8`
`P=0.8`
Hence the correct answer from the given alternative is (c ).
66.

The displacement s of a moving particle at a time t is given by `s=5+20t-2t^(2)`. Find its acceleration when the velocity is zero.

Answer» Given, `s=5+20t-2t^(2)` velocity `(v) =(ds)/(dt)=20-4t`
Now, `v=0.`
`therefore 20-4t=0`
`therefore t=5`
and acceleration `(a) =(dv)/(dt)=-4`
`((dv)/(dt))_(t=5)=-4`
Hence, the acceleration is-4 unit/`sec^(2).`
67.

The equation of tangent to the curve `y=x^(2)+4x+1` at (-1, -2) isA. `2x-y=0`B. `2x+y-5=0`C. `2x-y-1=0`D. `x+y-1=0`

Answer» The given equation of the curve is,
`y=x^(2)+4x+1.`
On differentiating w.r.t.x, we get
`(dy)/(dx)=2x+4`
`therefore ((dy)/(dx))_(x=-1)=2(-1)+4=-2+4=2.`
The equation of the tangent at `(-1,2)` is,
`y-(-2)=2(x-(1))`
`y+2=2(x+1)`
` y+2=2x+2`
`2x-y=0`
Hence, the correct answer from the given alternative is (a).
68.

If `barp=hati-2hatj+hatkand barq =hati+4hatj-2hatk` are position vector (P,V.) of points P and Q find the position internally in the ratio 2:1.

Answer» Let R `(vecr)` is the point which divides th line segment joining the points P and Q internally in the ratio `2:1.`
`vecr=(2(hati+4hatj-2hatk)+1(hati-2hatj+hatk))/(2+1)`
`vecr=(3hati+6hatj-3hatk)/(3)`
`thereforevecr=hati+2hatj-hatk`
and the coordinates of the point R are `(1,2-1).`
69.

Find the vector equation of the plane passing thrugh a point having position vector `3hati-3hatj+hatk` and perpendicular to the vector `4hati+3hatj+2hatk.`

Answer» We know that the vector equation of the plane passing through a point `A(veca)` and normal to `vecn` is `vecr*vecn=veca*vecn.`
Here, `veca=3hati-3hatj+hatkand vecn=4hati+3hatj+2hatk.`
`therefore` The equation of the required plane is
`vecr*(4hati+3hatj+2hatk)=(3hati-2hatj+hatk)(4hati+3hatj+2hatk)`
`vecr*(4hati+3hatj+2hatk)=12-6+2`
`vecr*(4hati+3hatj+2hatk)=8`
This is the required vector equation.
70.

Find the vector equation of the plane passing through the point `hati + hatj -2hatk` and `hati + 2hatj + hatk, 2hati - hatj + hatk.`

Answer» `veca, vecb, vecc` are the position vectors
i.e., `veca=hati+hatj-2hatk, vecb=hati+2hatj+hatk, vecc=2hati-hatj+hatkand vecb-veca=0hati+hatj+3hatk`
`vecc-veca=hati-2hatj+3hatk`
Now, `(vecb-veca)xx(vecc-veca)=|{:(hati, hatj, hatk),(0,1,3),(1,-2,3):}|`
`=hati(3+6)-hatj(0-3)+hatk(0-1)=9hati+3hatj-hatk`
Let `vecn =(vecb-veca)xx(vecc-veca)=9hati+3hatj-hatk`
Then, the vector equation of the required plane is
`vecr*vecn=veca*vecn`
`vecr(9hati+3hatj-hatk)=(hati+hatj-2hatk)(9hati+3hatj-hatk)`
`vecr(9hati+3hatj-hatk)=9+3+2`
`vecr(9hati+3hatj-hatk)=14`
The cartensian equation of the plane is given by
`(x hati+yhatj+zhatk)(9hati+3hatj-hatk)=14`
`because"["vecr=x hati+yhatj+z hatj"]"`
`9x+3y-x=14`
71.

If the lines `(x-1)/(-3)=(y-2)/(2k)=(z-3)/2`and `(x-1)/(3k)=(y-1)/1=(z-6)/(-5)`are perpendicular, find the value of k.

Answer» We have, `(x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)" "...(1)`
and ` (x-1)/(3k)=(y-5)/(1)=(x-6)/(-5)" "...(2)`
Now, directin ratios of line (1) are -3, 2k, and line (2) are k,1, -5.
If lines are perpendicular, than
`(-3)(3k)+(2k)(1)+(2)(-5)=0`
`-9k+2k-10=0`
`-7k=10`
`k=-10/7`