Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

35951.

What is midpoint theorem

Answer» And also half of it
According to mid point theorem,the line joining the mid point of two side of a triangle is parallel to third side.
35952.

Taut

Answer»
35953.

Previous question paper 2007 to 2018

Answer» Mere pass h aashish ,
2018 ask questions in cbse board
35954.

If 3 is the root of 5x+3y=13 find x

Answer» 2
4/5
35955.

Write the sum of exponents of prime factors in the prime factorisation of 250

Answer» 3+1=4
That is wrong answer by mistake Write answer:-1 is the power of 2 3 is power of 5 Hence sum of exponents:-1+3:4
2+5+5+5--17
35956.

Prove that √p+√q is irrational,where p and q are prime.

Answer» Consider\xa0{tex}\\sqrt { p } + \\sqrt { q }{/tex}\xa0is rational and can be represented as\xa0{tex}\\sqrt { p } + \\sqrt { q }{/tex}\xa0= a{tex}\\Rightarrow ( \\sqrt { p } ) = a - \\sqrt { q }{/tex}{tex}\\Rightarrow ( \\sqrt { p } ) ^ { 2 } = ( a - \\sqrt { q } ) ^ { 2 }{/tex}\xa0(squaring both sides)⇒ p = a2 + {tex}\\left(\\sqrt q\\right)^2{/tex} - 2 a {tex}\\sqrt { q }{/tex}⇒ p = a2 + q - 2 a {tex}\\sqrt { q }{/tex}⇒ 2a {tex} \\sqrt { q }{/tex} = a2 + q - p{tex}\\Rightarrow \\sqrt { q } = \\frac { a ^ { 2 } + q - p } { 2 a }{/tex}As q is prime so\xa0{tex}\\sqrt { q }{/tex}\xa0is not rational but\xa0{tex}\\frac { a ^ { 2 } + q - p } { 2 a }{/tex}\xa0is rational because a, p, q are non-zero integers which contradicts our consideration.Hence,\xa0{tex}\\sqrt { p } + \\sqrt { q }{/tex}\xa0is irrational where p and q are primes.
35957.

Px2 + 5x +5=0

Answer»
35958.

3x\'2-35x+88

Answer»
35959.

Solve 4(x^2+1/x)-4 (x+1/x)-27=0

Answer»
35960.

10^2y =5

Answer»
35961.

If cot A+ cosecA= 3/5 find cosecA

Answer» Cosec A= 3-5cotA/5
35962.

If points A (2,1)and B (a,b)and C(4,-1) are collinear and a-b=1,find the values of a and b?

Answer» If the points A(- 2, 1), B(a, b) and C(4, 1) are collinear and a - b = 1, we have to find a and b.If three points are collinear, then area covered by given points = 0.{tex}\\therefore{/tex} Area = {tex}\\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right]{/tex}=0Here,\xa0(x1, x2, x3) = (- 2, a, 4)and (y1, y2, y3) = (1, b, 1)Area ={tex}\\frac { 1 } { 2 } [ - 2 ( b - 1 ) + a ( 1 - 1 ) + 4 ( 1 - b ) ]{/tex}Area =\xa0{tex}\\frac { 1 } { 2 } [ - 2 b + 2 + 0 + 4 ( 1 - b ) ]{/tex}\xa00 = -3b + 3or, 3b = 3 or, b = 1Given, a - b = 1i.e, a - 1 = 1a = 2(a, b) = (2, 1)
35963.

What is the value of tan 40 × tan 5

Answer» tan(40+5) =tan45 =1
35964.

Which theorems r more probable 2 come throughout the papers from ch-6 of NCERT

Answer» Pythagorus,area theorem are more important
Pythagoras, bpt and its converse and the area th.
Bt my teacher advised me 2 concentrate on pythagoras and BPT as well as reverse of them
Theorem 6.1 ,6.2 ,6.3
35965.

Difference between the term of AP = n or an

Answer» yes a huge difference an = last term of an ap buy n = term of an ap for example we are given find s25 then we will put n= 25
35966.

If (a+b) : (b+c) : (c+a) = 6 : 7 : 8 & a+b+c = 14 then find the value of c

Answer»
35967.

Value of log3 * 53 lies between?

Answer»
35968.

In triangle if AD is

Answer»
35969.

Find the hcf by paper cutting

Answer»
35970.

Prove that the sum of a rational number and an irrational numbet is always irrational

Answer» Let R and I are rational number and irrational number respectively.Assume that sum of R and I is a rational number and equal to PSo\xa0R + I =Por I =P - R......., (1)As P and R both are rational number so P - R is also a rational number.Hence from (1) I is a rational numberBut this contradict that\xa0I is an irrational number.This contradiction has come because we assumed that R+ I is a\xa0rational number.Therefore the sum of irrational number and rational number is always an irrational number.
35971.

Find the roots of the following 1) 6/y+1+5/2y+1=3

Answer» The root of this equestion is 17/2
35972.

(x+1)-(x+2)+0

Answer» x+1-x-2+0=1-2-1
35973.

13.4 question no. 5 class 10

Answer» 7964.4m
35974.

Can you tell me something about Real roots.

Answer»
35975.

Pt √5 is irrational

Answer» Let us assume that\xa0√5 is a rational number.we know that the rational numbers are in the form of p/q form where p,q are intezers.so,\xa0√5 = p/q p =\xa0√5qwe know that \'p\' is a rational number. so\xa0√5 q must be rational since it equals to pbut it doesnt occurs with\xa0√5 since its not an intezertherefore, p =/=\xa0√5qthis contradicts the fact that\xa0√5 is an irrational numberhence our assumption is wrong and\xa0√5 is an irrational number
35976.

Find the value of a&b, so that x4+x3+8x2+ax b is divisible by x2+ 1

Answer» Your value of a should be 1 and value of b =7
35977.

Sir tell me what is maths

Answer» M-meri A-attamaT-tujhe H-hameshaS-sataygi
35978.

Important question of chapter 6

Answer» Which subject
35979.

5.3 question 19 please explen it

Answer»
35980.

Express the trigometry ratios sinA, sec A, and tanA in terms of cot A. Tell me answer??

Answer» Tan A =1 /COTAU
35981.

Formula for mean

Answer» total number of terms divided by 2
35982.

I want section formula direvation

Answer»
35983.

2x^2 +x+4=0 solve it completing sqaure method

Answer» We have{tex}2x^2 + x - 4 = 0{/tex}{tex}4x^2\xa0+ 2x - 8 = 0{/tex} [multiplying both sides by 2]{tex}4x^2 + 2x = 8{/tex}{tex}\\Rightarrow ( 2 x ) ^ { 2 } + 2 \\times 2 x \\times \\frac { 1 } { 2 } + \\left( \\frac { 1 } { 2 } \\right) ^ { 2 } = 8 + \\left( \\frac { 1 } { 2 } \\right) ^ { 2 }{/tex}\xa0[adding\xa0{tex}\\left( \\frac { 1 } { 2 } \\right) ^ { 2 }{/tex} on both sides]{tex}\\Rightarrow \\left( 2 x + \\frac { 1 } { 2 } \\right) ^ { 2 } = \\left( 8 + \\frac { 1 } { 4 } \\right) = \\frac { 33 } { 4 } = \\left( \\frac { \\sqrt { 33 } } { 2 } \\right) ^ { 2 }{/tex}{tex}\\Rightarrow{/tex}\xa02x +\xa0{tex}\\frac{1}{2} = \\pm \\left( \\frac { \\sqrt { 33 } } { 2 } \\right){/tex}\xa0[taking square root on both sides]{tex}\\Rightarrow{/tex}\xa0{tex}2x +{/tex}\xa0{tex}\\frac { 1 } { 2 } = \\frac { \\sqrt { 33 } } { 2 }{/tex}\xa0or 2x +\xa0{tex}\\frac { 1 } { 2 } = \\frac {- \\sqrt { 33 } } { 2 }{/tex}{tex}\\Rightarrow 2x=\\frac{\\sqrt{33}}{2}-\\frac{1}{2}\\ or \\ 2x=-\\frac{\\sqrt{33}}{2}-\\frac{1}{2}{/tex}{tex}\\Rightarrow x=\\frac{\\sqrt{33}-1}{4}\\ \\ or \\ \\ x=\\frac{-(\\sqrt{33}+1)}{4}{/tex}
35984.

2x*3

Answer»
35985.

Find the sum of 3 digit natiral numbers which are multiples of 11

Answer» Three digits numbers that are divisible by 11 are :-110, 121, 132,.............., 990Clearly ,above sequence is an A.P.Here,\xa0a (First term)\xa0= 110d (common difference)\xa0= 11an = 990We know that, in A.P.an\xa0= a + (n - 1)dOr, 990 = 110 + (n - 1)\xa0{tex}\\times{/tex}\xa011Or, 990 = 110 + 11n - 11Or, 990 = 99 + 11nOr, 891 = 11nOr, n = 81Also,\xa0Sn\xa0 =\xa0{tex}\\frac n 2{/tex} (a + an)Or, S81\xa0= {tex}\\frac{{81}}{2}(110 + 990){/tex}Or, S81 = 81\xa0{tex}\\times{/tex}550Or, S81 = 44550.
35986.

Show that every positive odd integer is of the form (4q+1) or (4q+3) for some integer q.

Answer» Let a = 4q + r : 0\xa0{tex}\\leq r < 4{/tex}\xa0{tex}\\therefore a = 4 q = 2 ( 2 q ) \\text { an even integer }{/tex}{tex}a = 4 q + 1 = 2 ( 2 q ) + 1 \\text { an odd integer }{/tex}{tex}a = 4 q + 2 = 2 ( 2 q + 1 ) \\text { an even integer }{/tex}{tex}a = 4 q + 3 = 2 ( 2 q + 1 ) + 1 \\text { an odd integer }{/tex}{tex}\\therefore {/tex}\xa0Every positive odd integer is of the form\xa0{tex}( 4 q + 1 ) o r ( 4 q + 3 ) \\text { for some integer }{/tex}
35987.

Chapter 6 all theorem in Hindi

Answer»
35988.

X+1/x=M

Answer»
35989.

An a.p. the pth term is 1/q and the qth term is 1/p, find the (pq)th term.

Answer» -1
35990.

Exercise 7.4 Q. 1

Answer»
35991.

if ( x+2) is a factor of x2+ax+2b and a+b=4 , then what will be the value of a

Answer» X+2=0Gives,x=-2Put in x2+ax+2b=0 as x+2 is a factor of the given eq. And remainder would be zero.Then after solving this we would get 2a-2b=4 or a-b=2 and we will asume it as eq1Also other eq.has been given that is a+b=4 eq.2 Solving eq 1and 2 by elemination method a-b=2a+b=4Will give 2a=6a=6÷2Therefore,a=3
35992.

The diameter and height of the cylinder and cone are equal . Find the ratios of their volumes

Answer» 1:3
35993.

If p is prime number then, what is the LCM of p, p2,p3?

Answer» 6p
35994.

A boat goes 30 km

Answer» Let the speed of boat is x km/h in still water and stream y km/hAccording to question,{tex}\\frac{{30}}{{x - y}} + \\frac{{44}}{{x + y}} = 10{/tex}and {tex}\\frac{{40}}{{x - y}} + \\frac{{55}}{{x + y}} = 13{/tex}Let\xa0{tex}\\frac{1}{{x - y}} = u{/tex} and {tex}\\frac{1}{{x + y}} = v{/tex}30u + 44v = 10 ...(i)40u + 55v = 13 ....(ii)on solving eq. (i) and (ii) we get,{tex}u = \\frac{1}{5} \\Rightarrow x - y = 5{/tex} ....(iii){tex}v = \\frac{1}{{11}} \\Rightarrow x + y = 11{/tex} ....(iv)On solving eq. (iii) and (iv) we get,x = 8km/hy = 3km/h
35995.

( )+( )=8( )- ( )=6+. +|| ||13. 8

Answer»
35996.

Define Decimal expression ?

Answer» Value of any fraction
35997.

0by0=2 why

Answer» But how
Due to mistake
35998.

2+2=5 why

Answer» 2+1+2=5
35999.

Write the first three terms in each of the sequence defined by the following a=3n+2n

Answer» 5,10,15
36000.

2x square-x_1=0

Answer»