InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 35951. |
What is midpoint theorem |
|
Answer» And also half of it According to mid point theorem,the line joining the mid point of two side of a triangle is parallel to third side. |
|
| 35952. |
Taut |
| Answer» | |
| 35953. |
Previous question paper 2007 to 2018 |
|
Answer» Mere pass h aashish , 2018 ask questions in cbse board |
|
| 35954. |
If 3 is the root of 5x+3y=13 find x |
|
Answer» 2 4/5 |
|
| 35955. |
Write the sum of exponents of prime factors in the prime factorisation of 250 |
|
Answer» 3+1=4 That is wrong answer by mistake Write answer:-1 is the power of 2 3 is power of 5 Hence sum of exponents:-1+3:4 2+5+5+5--17 |
|
| 35956. |
Prove that √p+√q is irrational,where p and q are prime. |
| Answer» Consider\xa0{tex}\\sqrt { p } + \\sqrt { q }{/tex}\xa0is rational and can be represented as\xa0{tex}\\sqrt { p } + \\sqrt { q }{/tex}\xa0= a{tex}\\Rightarrow ( \\sqrt { p } ) = a - \\sqrt { q }{/tex}{tex}\\Rightarrow ( \\sqrt { p } ) ^ { 2 } = ( a - \\sqrt { q } ) ^ { 2 }{/tex}\xa0(squaring both sides)⇒ p = a2 + {tex}\\left(\\sqrt q\\right)^2{/tex} - 2 a {tex}\\sqrt { q }{/tex}⇒ p = a2 + q - 2 a {tex}\\sqrt { q }{/tex}⇒ 2a {tex} \\sqrt { q }{/tex} = a2 + q - p{tex}\\Rightarrow \\sqrt { q } = \\frac { a ^ { 2 } + q - p } { 2 a }{/tex}As q is prime so\xa0{tex}\\sqrt { q }{/tex}\xa0is not rational but\xa0{tex}\\frac { a ^ { 2 } + q - p } { 2 a }{/tex}\xa0is rational because a, p, q are non-zero integers which contradicts our consideration.Hence,\xa0{tex}\\sqrt { p } + \\sqrt { q }{/tex}\xa0is irrational where p and q are primes. | |
| 35957. |
Px2 + 5x +5=0 |
| Answer» | |
| 35958. |
3x\'2-35x+88 |
| Answer» | |
| 35959. |
Solve 4(x^2+1/x)-4 (x+1/x)-27=0 |
| Answer» | |
| 35960. |
10^2y =5 |
| Answer» | |
| 35961. |
If cot A+ cosecA= 3/5 find cosecA |
| Answer» Cosec A= 3-5cotA/5 | |
| 35962. |
If points A (2,1)and B (a,b)and C(4,-1) are collinear and a-b=1,find the values of a and b? |
| Answer» If the points A(- 2, 1), B(a, b) and C(4, 1) are collinear and a - b = 1, we have to find a and b.If three points are collinear, then area covered by given points = 0.{tex}\\therefore{/tex} Area = {tex}\\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right]{/tex}=0Here,\xa0(x1, x2, x3) = (- 2, a, 4)and (y1, y2, y3) = (1, b, 1)Area ={tex}\\frac { 1 } { 2 } [ - 2 ( b - 1 ) + a ( 1 - 1 ) + 4 ( 1 - b ) ]{/tex}Area =\xa0{tex}\\frac { 1 } { 2 } [ - 2 b + 2 + 0 + 4 ( 1 - b ) ]{/tex}\xa00 = -3b + 3or, 3b = 3 or, b = 1Given, a - b = 1i.e, a - 1 = 1a = 2(a, b) = (2, 1) | |
| 35963. |
What is the value of tan 40 × tan 5 |
| Answer» tan(40+5) =tan45 =1 | |
| 35964. |
Which theorems r more probable 2 come throughout the papers from ch-6 of NCERT |
|
Answer» Pythagorus,area theorem are more important Pythagoras, bpt and its converse and the area th. Bt my teacher advised me 2 concentrate on pythagoras and BPT as well as reverse of them Theorem 6.1 ,6.2 ,6.3 |
|
| 35965. |
Difference between the term of AP = n or an |
| Answer» yes a huge difference an = last term of an ap buy n = term of an ap for example we are given find s25 then we will put n= 25 | |
| 35966. |
If (a+b) : (b+c) : (c+a) = 6 : 7 : 8 & a+b+c = 14 then find the value of c |
| Answer» | |
| 35967. |
Value of log3 * 53 lies between? |
| Answer» | |
| 35968. |
In triangle if AD is |
| Answer» | |
| 35969. |
Find the hcf by paper cutting |
| Answer» | |
| 35970. |
Prove that the sum of a rational number and an irrational numbet is always irrational |
|
Answer» Let R and I are rational number and irrational number respectively.Assume that sum of R and I is a rational number and equal to P |
|
| 35971. |
Find the roots of the following 1) 6/y+1+5/2y+1=3 |
| Answer» The root of this equestion is 17/2 | |
| 35972. |
(x+1)-(x+2)+0 |
| Answer» x+1-x-2+0=1-2-1 | |
| 35973. |
13.4 question no. 5 class 10 |
| Answer» 7964.4m | |
| 35974. |
Can you tell me something about Real roots. |
| Answer» | |
| 35975. |
Pt √5 is irrational |
| Answer» Let us assume that\xa0√5 is a rational number.we know that the rational numbers are in the form of p/q form where p,q are intezers.so,\xa0√5 = p/q p =\xa0√5qwe know that \'p\' is a rational number. so\xa0√5 q must be rational since it equals to pbut it doesnt occurs with\xa0√5 since its not an intezertherefore, p =/=\xa0√5qthis contradicts the fact that\xa0√5 is an irrational numberhence our assumption is wrong and\xa0√5 is an irrational number | |
| 35976. |
Find the value of a&b, so that x4+x3+8x2+ax b is divisible by x2+ 1 |
| Answer» Your value of a should be 1 and value of b =7 | |
| 35977. |
Sir tell me what is maths |
| Answer» M-meri A-attamaT-tujhe H-hameshaS-sataygi | |
| 35978. |
Important question of chapter 6 |
| Answer» Which subject | |
| 35979. |
5.3 question 19 please explen it |
| Answer» | |
| 35980. |
Express the trigometry ratios sinA, sec A, and tanA in terms of cot A. Tell me answer?? |
| Answer» Tan A =1 /COTAU | |
| 35981. |
Formula for mean |
| Answer» total number of terms divided by 2 | |
| 35982. |
I want section formula direvation |
| Answer» | |
| 35983. |
2x^2 +x+4=0 solve it completing sqaure method |
| Answer» We have{tex}2x^2 + x - 4 = 0{/tex}{tex}4x^2\xa0+ 2x - 8 = 0{/tex} [multiplying both sides by 2]{tex}4x^2 + 2x = 8{/tex}{tex}\\Rightarrow ( 2 x ) ^ { 2 } + 2 \\times 2 x \\times \\frac { 1 } { 2 } + \\left( \\frac { 1 } { 2 } \\right) ^ { 2 } = 8 + \\left( \\frac { 1 } { 2 } \\right) ^ { 2 }{/tex}\xa0[adding\xa0{tex}\\left( \\frac { 1 } { 2 } \\right) ^ { 2 }{/tex} on both sides]{tex}\\Rightarrow \\left( 2 x + \\frac { 1 } { 2 } \\right) ^ { 2 } = \\left( 8 + \\frac { 1 } { 4 } \\right) = \\frac { 33 } { 4 } = \\left( \\frac { \\sqrt { 33 } } { 2 } \\right) ^ { 2 }{/tex}{tex}\\Rightarrow{/tex}\xa02x +\xa0{tex}\\frac{1}{2} = \\pm \\left( \\frac { \\sqrt { 33 } } { 2 } \\right){/tex}\xa0[taking square root on both sides]{tex}\\Rightarrow{/tex}\xa0{tex}2x +{/tex}\xa0{tex}\\frac { 1 } { 2 } = \\frac { \\sqrt { 33 } } { 2 }{/tex}\xa0or 2x +\xa0{tex}\\frac { 1 } { 2 } = \\frac {- \\sqrt { 33 } } { 2 }{/tex}{tex}\\Rightarrow 2x=\\frac{\\sqrt{33}}{2}-\\frac{1}{2}\\ or \\ 2x=-\\frac{\\sqrt{33}}{2}-\\frac{1}{2}{/tex}{tex}\\Rightarrow x=\\frac{\\sqrt{33}-1}{4}\\ \\ or \\ \\ x=\\frac{-(\\sqrt{33}+1)}{4}{/tex} | |
| 35984. |
2x*3 |
| Answer» | |
| 35985. |
Find the sum of 3 digit natiral numbers which are multiples of 11 |
| Answer» Three digits numbers that are divisible by 11 are :-110, 121, 132,.............., 990Clearly ,above sequence is an A.P.Here,\xa0a (First term)\xa0= 110d (common difference)\xa0= 11an = 990We know that, in A.P.an\xa0= a + (n - 1)dOr, 990 = 110 + (n - 1)\xa0{tex}\\times{/tex}\xa011Or, 990 = 110 + 11n - 11Or, 990 = 99 + 11nOr, 891 = 11nOr, n = 81Also,\xa0Sn\xa0 =\xa0{tex}\\frac n 2{/tex} (a + an)Or, S81\xa0= {tex}\\frac{{81}}{2}(110 + 990){/tex}Or, S81 = 81\xa0{tex}\\times{/tex}550Or, S81 = 44550. | |
| 35986. |
Show that every positive odd integer is of the form (4q+1) or (4q+3) for some integer q. |
| Answer» Let a = 4q + r : 0\xa0{tex}\\leq r < 4{/tex}\xa0{tex}\\therefore a = 4 q = 2 ( 2 q ) \\text { an even integer }{/tex}{tex}a = 4 q + 1 = 2 ( 2 q ) + 1 \\text { an odd integer }{/tex}{tex}a = 4 q + 2 = 2 ( 2 q + 1 ) \\text { an even integer }{/tex}{tex}a = 4 q + 3 = 2 ( 2 q + 1 ) + 1 \\text { an odd integer }{/tex}{tex}\\therefore {/tex}\xa0Every positive odd integer is of the form\xa0{tex}( 4 q + 1 ) o r ( 4 q + 3 ) \\text { for some integer }{/tex} | |
| 35987. |
Chapter 6 all theorem in Hindi |
| Answer» | |
| 35988. |
X+1/x=M |
| Answer» | |
| 35989. |
An a.p. the pth term is 1/q and the qth term is 1/p, find the (pq)th term. |
| Answer» -1 | |
| 35990. |
Exercise 7.4 Q. 1 |
| Answer» | |
| 35991. |
if ( x+2) is a factor of x2+ax+2b and a+b=4 , then what will be the value of a |
| Answer» X+2=0Gives,x=-2Put in x2+ax+2b=0 as x+2 is a factor of the given eq. And remainder would be zero.Then after solving this we would get 2a-2b=4 or a-b=2 and we will asume it as eq1Also other eq.has been given that is a+b=4 eq.2 Solving eq 1and 2 by elemination method a-b=2a+b=4Will give 2a=6a=6÷2Therefore,a=3 | |
| 35992. |
The diameter and height of the cylinder and cone are equal . Find the ratios of their volumes |
| Answer» 1:3 | |
| 35993. |
If p is prime number then, what is the LCM of p, p2,p3? |
| Answer» 6p | |
| 35994. |
A boat goes 30 km |
| Answer» Let the speed of boat is x km/h in still water and stream y km/hAccording to question,{tex}\\frac{{30}}{{x - y}} + \\frac{{44}}{{x + y}} = 10{/tex}and {tex}\\frac{{40}}{{x - y}} + \\frac{{55}}{{x + y}} = 13{/tex}Let\xa0{tex}\\frac{1}{{x - y}} = u{/tex} and {tex}\\frac{1}{{x + y}} = v{/tex}30u + 44v = 10 ...(i)40u + 55v = 13 ....(ii)on solving eq. (i) and (ii) we get,{tex}u = \\frac{1}{5} \\Rightarrow x - y = 5{/tex} ....(iii){tex}v = \\frac{1}{{11}} \\Rightarrow x + y = 11{/tex} ....(iv)On solving eq. (iii) and (iv) we get,x = 8km/hy = 3km/h | |
| 35995. |
( )+( )=8( )- ( )=6+. +|| ||13. 8 |
| Answer» | |
| 35996. |
Define Decimal expression ? |
| Answer» Value of any fraction | |
| 35997. |
0by0=2 why |
|
Answer» But how Due to mistake |
|
| 35998. |
2+2=5 why |
| Answer» 2+1+2=5 | |
| 35999. |
Write the first three terms in each of the sequence defined by the following a=3n+2n |
| Answer» 5,10,15 | |
| 36000. |
2x square-x_1=0 |
| Answer» | |