Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

39051.

Solutions for 6x+10y=4,3x+5y=-11

Answer» 6x+10y-4=0..............eq13x+5y+11=0.............eq2now subtract eq2 from eq1gives 3x+5y=-14.............eq 3hat is not possible so i recommend u to recheck the question
39052.

what is the standard form in linear equations in two variables

Answer» ax+by+c=0
39053.

√45 +7√45

Answer» 24√5
6√5+7
39054.

The hcf of 441,567,693by using Euclid\'s division algorithm

Answer»
39055.

if cosA=(√4-x^2)/2 then find the value secA×tanA

Answer»
39056.

Examine whether (3-√2)(3+√2) is a rational or irrational

Answer» Rational Number
Rational no.
Rational
39057.

Types of irrational numbers

Answer»
39058.

If m and n are the zeroes of the polynomial ax2+5x+c find the value of a and c if m+n+mn=10

Answer»
39059.

Consistency

Answer»
39060.

Write coordinates of origion

Answer»
39061.

Factorization of 11x^2 -33X-368 ?

Answer»
39062.

2x+5=0 x=

Answer» -5/2
-5/2
-5/2
-2.5
-5/2
-5/2
39063.

Find the number to be added to the polynomial xsqure -5x+4, so that 3is the zero of the polynomial

Answer» If 2 is added to the polynomial.....x²-5x+4+2=x²-5x+6x²-3x-2x+6=x(x-3)-2(x-3)(x-3)(x-2)=x=3,2
39064.

Cosec2(90-theta)-tan2 theta/2(cos2 48+cos2 42)-2tan2 30 sec2 52 sin 2 38 /cosec2 70 -tan2 20

Answer»
39065.

If cotA + tanA =xAnd secA - cosA = yProve that-(x²y)⅔ -(xy²)⅔=1

Answer»
39066.

68 is thewater term ofto AP 7,10,13.......

Answer» 68 is not the term of given AP
39067.

Mean find 37

Answer»
39068.

Find the composite two digit number and coprime two divit number ?

Answer» composite two digit number = 99and\xa0coprime two digit number are 12 and 13
39069.

Write the zeroes of the polynomial x2-x+6

Answer» x2-(3-2)x+6=0x2-3x+2x+6=0-x(x+3)2(x+3)=0(-x+2)(x+3)=0-x+2=0-x=-2x=2x+3=0x=-3Hence the zeroes of polynomial are -3 & 2
U write wrong question.
39070.

The HCF of two numbers is 16 and thier product is 3072 find the lcm

Answer» HCF = 16,Product of Numbers = 3072According to formula, if a and b are two given numbers, then{tex}HCF(a, b) \\times LCM(a, b) = a \\times b{/tex}{tex}16 \\times LCM(a,b)=3072{/tex}{tex}LCM(a,b)=\\cfrac {3072}{16}{/tex}{tex}LCM(a,b)=192{/tex}
192
39071.

265+564

Answer» 829
39072.

Show that 12to the power n cannot end with digits 0 or 5 any natural minumber n

Answer» The factors of 12 are 1,2,3,4,6,12 So to end with 0 the 5 is also required as a factor Since 12 does not have 5 as a factor Do there is no natural no.that end with 0
39073.

Proof of BPT theoram

Answer»
39074.

Hcf of 144

Answer» There must be another number too
39075.

If 3cot A = 4, find the value of Cos A- Sin A.

Answer» Cos A=b/h=4/3
3cotA=4So,cotA=3/4=b/pH=?H=5CosA=b/h=3/5SinA=p/h=4/5Value=cosA-sinA =3/5-4/5 =-1/5Where b is base ,p is perpendicular and h is hypotenuse
CotA=4/3, then h=5 so cos a -sin a=1/5
39076.

Small prime number

Answer» 2
39077.

If the HCF of 65 and 117 is expressible in the form of 65m-117 then find the value of m?

Answer» 5600
39078.

Hcf of 184230 and 276 by euclide division algorithms

Answer» Given numbers are 184, 230, and 276.Applying Euclid\'s division lemma to 184 and 230, we get230 = 184\xa0{tex}\\times{/tex}\xa01 + 46184 = 46\xa0{tex}\\times{/tex}\xa04 + 0The remainder at this stage is zero.So, the divisor at this or the remainder at the previous stage i.e., 46 is the HCF of 184 and 230.Also,276 = 46\xa0{tex}\\times{/tex}\xa06 + 0∴ HCF of 276 and 46 is 46HCF (184, 230, 276) = 46Hence, the required HCF of 184, 230 and 276 is 46.
39079.

400÷200

Answer» You are right.
Is it 10 class question
400/200=2
39080.

Example 10 chapter 1 class 10 ncert cbse

Answer» Show that 5 minus under root 3 is irrational
Are you telling or not
I want before night
Tell fast
39081.

Prove (1+cosA)/sinA=sinA/(1-cosA)

Answer»
39082.

Write a rational number between under root3 and under root2.

Answer» {tex}\\text {Value of } \\sqrt3 = 1.732... \\text { and value of } \\sqrt2 = 1.414...{/tex}{tex}\\text {Rational number between } \\sqrt 3 \\text { and } \\sqrt 2 \\text { is } \\cfrac {3}{2} \\text { or } 1.5{/tex}
39083.

Problems on leap year

Answer»
39084.

can you prove that sin 30 degree =1/2

Answer» Yes
39085.

5448 /555

Answer»
39086.

When was class 10 math compartment paper ...

Answer» What is current
Exercise 4.3 question 11
39087.

Factorise of x2 -55x+ 750

Answer» x2-30x-25x+750x(x-30)-26(x-30)(x-26)(x-30)x-26=0x=26x-30=0x=30
39088.

express the number 0.3178 In the form of in the form of ractional number a&b

Answer»
39089.

( sin theta + cos theta ) ( tan theta + cot theta ) = sec theta + csc theta prove it

Answer» L.H.S.\xa0{tex}= (\\sin \\theta + \\cos \\theta )(\\tan \\theta + \\cot \\theta ){/tex}{tex}= (\\sin \\theta + \\cos \\theta )\\left( {\\frac{{\\sin \\theta }}{{\\cos \\theta }} + \\frac{{\\cos \\theta }}{{\\sin \\theta }}} \\right){/tex}{tex}= (\\sin \\theta + \\cos \\theta )\\left( {\\frac{{{{\\sin }^2}\\theta + {{\\cos }^2}\\theta }}{{\\sin \\theta \\cos \\theta }}} \\right){/tex}{tex} = (\\sin \\theta + \\cos \\theta )\\left( {\\frac{1}{{\\sin \\theta \\cos \\theta }}} \\right){/tex}{tex} = \\frac{{\\sin \\theta + \\cos \\theta }}{{\\sin \\theta \\cos \\theta }}{/tex}{tex} = \\frac{{\\sin \\theta }}{{\\sin \\theta \\cos \\theta }} + \\frac{{\\cos \\theta }}{{\\sin \\theta \\cos \\theta }}{/tex}{tex}= \\frac{1}{{\\cos \\theta }} + \\frac{1}{{\\sin \\theta }}{/tex}{tex}= \\sec \\theta + \\cos ec\\theta {/tex}= R.H.S.
39090.

find the sum og firdt 8 multiples if 3

Answer» S = 3 + 6 + 9 + 12 + .... + 24= 3(1 + 2 + 3 + ... + 8)= 3\xa0{tex}\\times{/tex}\xa0{tex}\\frac{8 \\times 9}{2}{/tex} = 108
39091.

If 1&-2 are two zeroes of the pollynomial xcube-4xsquare-7x+10. Find its third zero.

Answer» let alpha and beta be two 0\'sThen by app. Formula.. Find third 0ro
39092.

If Sn= 3n^2 + 5n and an= 164, find n?

Answer» the value of n=27
39093.

If a_n = 3-4n , find AP and sum of 20 terms

Answer»
39094.

Chapter 10 theoram

Answer»
39095.

36x2_12a2x+(a2_b2)=0

Answer»
39096.

use euclid division algorithum hcf of 216 and 297

Answer»
39097.

Do optional exercises will come in cbse board

Answer» Yes . It may come but in a different language and data .
39098.

If f(x)=ax2+bx+chas no real zeros and a+b+c

Answer»
39099.

What is quadratic formula

Answer» (X= -b±√b²-4ac/2a)
39100.

5x+2y=2k2(k+1)x+ky=(3k+4)

Answer» {tex}5x + 2y = 2k{/tex}{tex}2(k + 1)x + ky = (3k + 4){/tex}These are of the form{tex}a_1x + b_1y + c_1\xa0= 0 , a_2x + b_2y + c_2\xa0= 0{/tex}where,{tex}a_1= 5\xa0,b_1= 2, c_1\xa0= -2k,{/tex}{tex}a_2= 2(k +1)\xa0,b_2= k\xa0,c_2\xa0= -(3k + 4){/tex}For infinitely many solutions, we must\xa0have{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { c _ { 1 } } { c _ { 2 } }{/tex}This holds only when{tex}\\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 } { k } = \\frac { - 2 k } { - ( 3 k + 4 ) }{/tex}{tex}\\Rightarrow \\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 } { k } = \\frac { 2 k } { ( 3 k + 4 ) }{/tex}Now, the following cases arises:Case 1:{tex}\\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 } { k }{/tex}[Taking I and II]{tex}\\Rightarrow 5 k = 4 ( k + 1 ) \\Rightarrow 5 k = 4 k + 4{/tex}k = 4Case 2:{tex}\\frac { 2 } { k } = \\frac { 2 k } { ( 3 k + 4 ) }{/tex}[Taking II and III]{tex}\\Rightarrow{/tex}2(3k +\xa04) = 2k2\xa0{tex}\\Rightarrow{/tex}6k + 8 = 2k2{tex}\\Rightarrow{/tex}{tex}2k^2\xa0-\xa06k + 8 =\xa00{/tex}{tex}\\Rightarrow{/tex}{tex}2(k^2\xa0- 3k + 4)=\xa00{/tex}{tex}\\Rightarrow{/tex}{tex}k^2\xa0- 3k - 4 = 0{/tex}{tex}\\Rightarrow{/tex}{tex}k^2\xa0- 4k + k - 4 = 0{/tex}{tex}\\Rightarrow{/tex}k(k - 4) + 1(k - 4) = 0{tex}\\Rightarrow{/tex}(k - 4)(k +\xa01) = 0(k - 4) = 0 or k + 1 = 0{tex}\\Rightarrow{/tex}\xa0k = 4 or k = -1Case 3:{tex}\\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 k } { ( 3 k + 4 ) }{/tex}[Taking I and II]{tex}\\Rightarrow 15 k + 20 = 4 k ^ { 2 } = 4 k{/tex}{tex}\\Rightarrow{/tex}4k2\xa0+ 4k - 15k - 20 = 0{tex}\\Rightarrow{/tex}\xa04k2\xa0- 11k - 20 = 0{tex}\\Rightarrow{/tex}4k2\xa0- 16k + 5k - 20 =0{tex}\\Rightarrow{/tex}4k(k - 4) + 5(k - 4) = 0{tex}\\Rightarrow{/tex}(k - 4)(4k + 5) = 0{tex}\\Rightarrow k = 4 \\text { or } k = \\frac { - 5 } { 4 }{/tex}Thus, k = 4, is the common value of which there are infinitely many solutions.