Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

38951.

SinA=4/5 find perpendicular

Answer» 4
38952.

Can the number 4n , n being a natural number , ends with digit 0 ? Give reason

Answer»
38953.

What is the linear combination of real numbers

Answer» Using variables, representing a real no. in the form of an equation.
38954.

Find A qaudratic eqauation whose one root is 3

Answer» since 3 is the root of the equation, x = 3 must satisfy the equation.Applying x = 3\xa0in the equation {tex}{x^2} - 5x + 6 = 0{/tex}gives, {tex}{\\left( 3 \\right)^2} - 5 ( 3) + 6 = 0{/tex}{tex} \\Rightarrow {/tex}{tex}9 - 15 + 6 = 0{/tex}{tex} \\Rightarrow {/tex}{tex}15 - 15 = 0{/tex}{tex} \\Rightarrow {/tex}{tex}0 = 0{/tex}{tex} \\Rightarrow {/tex}L.H.S. = R.H.S.Hence, {tex}{x^2} - 5x + 6 = 0{/tex} is a required equation which has 3 as root.
38955.

Ifone zero of the polynomial (asquare+9)xsquare+45x+6a is reciprocal of other ,find the value ofa

Answer» Please answer quickly
38956.

Cos thita equals to

Answer» Cos θ = (Adjacent side)/(Hypotenuse side) = √(1-sin^2 θ) = 1/(sec θ) = sin(90-θ) = sin((π/2)-θ) = sin(90+θ) = sin((π/2)+θ) = (sin 2θ)/(2 cos θ) = √(1+cos 2θ)/2 = (tan θ)/(sin θ) = (cos θ)/(cot θ)
1/sin thita
1/sec thita,
38957.

What is consecutive positive integer?

Answer» The no.s. of the form m and m+1
38958.

Draw a line segment AB=7 cm. Take a point P on AB such that AP : PB =3 : 4

Answer»
38959.

Sample paper of board 2018

Answer»
38960.

Show that the points A (7,10),(-2,5) and (3,-4) are the vertices of of an isosceles right triangle

Answer» Answer please
38961.

If alpha and beta are the zeroes of polynomial 6xsquare+x-2.find alpha/beta +beta/alpha.

Answer» f(x) = 6x2\xa0+ x - 2a = 6, b = 1, c = -2Let zeroes be {tex}\\alpha{/tex}\xa0and β.ThenSum of zeroes=\xa0{tex}\\alpha{/tex} +\xa0β {tex}=\\;-\\frac ba\\;=-\\frac16{/tex}Product of zeroes {tex}\\alpha{/tex}× β {tex}=\\;\\;\\frac ca\\;=\\;\\frac{-2}6\\;=\\;-\\frac13{/tex}{tex}\\frac { \\alpha } { \\beta } + \\frac { \\beta } { \\alpha } = \\frac { \\alpha ^ { 2 } + \\beta ^ { 2 } } { \\alpha \\beta }{/tex}{tex}= \\frac { ( \\alpha + \\beta ) ^ { 2 } - 2 \\alpha \\beta } { \\alpha \\beta } \\left[ \\because ( \\alpha + \\beta ) ^ { 2 } = \\alpha ^ { 2 } + \\beta ^ { 2 } + 2 \\alpha \\beta \\right]{/tex}{tex}= \\frac { \\left[- \\frac { 1 } { 6 } \\right] ^ { 2 } - 2 \\left[ - \\frac { 1 } { 3 } \\right] } { \\left[ - \\frac { 1 } { 3 } \\right] }{/tex}{tex}= \\frac { \\frac { 1 } { 36 } + \\frac { 2 } { 3 } } { - \\frac { 1 } { 3 } }{/tex}{tex}= \\frac { \\frac { 1 + 24 } { 36 } } { - \\frac { 1 } { 3 } }{/tex}{tex}= \\frac { 25 } { 36 } \\times \\frac { - 3 } { 1 }{/tex}{tex}= \\frac { - 25 } { 12 }{/tex}
38962.

________+________+_________=30 fill with odd numbers from 3-15. Only

Answer» 3! + 13+ 11 = 30! Means factorialOr(19-1) + 7 + 5 = 30Other than these, there is no valid solution of it.
38963.

65%80+12*25%58

Answer»
38964.

If 77th term of Ap=1/9 and9th=1/7 find 63th term

Answer» Let a be the first term and d be the common difference of the given AP. Then,{tex}T _ { 7 } = \\frac { 1 } { 9 } \\Rightarrow a + 6 d = \\frac { 1 } { 9 }{/tex}\xa0...(i){tex}T _ { 9 } = \\frac { 1 } { 7 } \\Rightarrow a + 8 d = \\frac { 1 } { 7 }{/tex}\xa0...(i)On subtracting (i) from (ii), we get{tex}2 d = \\left( \\frac { 1 } { 7 } - \\frac { 1 } { 9 } \\right) = \\frac { 2 } { 63 } \\Rightarrow d = \\left( \\frac { 1 } { 2 } \\times \\frac { 2 } { 63 } \\right) = \\frac { 1 } { 63 }.{/tex}Putting d =\xa0{tex}\\frac { 1 } { 63 }{/tex}in (i), we get{tex}a + \\left( 6 \\times \\frac { 1 } { 63 } \\right) = \\frac { 1 } { 9 } \\Rightarrow a + \\frac { 2 } { 21 } = \\frac { 1 } { 9 } \\Rightarrow a = \\left( \\frac { 1 } { 9 } - \\frac { 2 } { 21 } \\right) = \\left( \\frac { 7 - 6 } { 63 } \\right) = \\frac { 1 } { 63 }.{/tex}Thus, a =\xa0{tex}\\frac { 1 } { 63 }{/tex}\xa0and d =\xa0{tex}\\frac { 1 } { 63 }.{/tex}{tex}\\therefore{/tex}\xa0T63 = a + (63-1)d = (a + 62d){tex}= \\left( \\frac { 1 } { 63 } + 62 \\times \\frac { 1 } { 63 } \\right) = \\left( \\frac { 1 } { 63 } + \\frac { 62 } { 63 } \\right) = 1.{/tex}Hence, 63rd term of the given AP is 1.
38965.

Find the value of Y such that the points A(a,a) B{Y,(3a)1/2} and C{-a,a}

Answer»
38966.

If a positive integer p is divided by 3,then find the possible remainder

Answer» 1,2
38967.

Set of all tallest persons in your classroom is set or not give reason

Answer» yes their will be a grp of tallest person
38968.

Prove that 6^n can never end with the digits 0 or 2 or 5

Answer»
38969.

Polynamials

Answer» About polynomial
What u need
38970.

(3k+1)x^2 + 2(k+1)x +1 find value of k which has equal roots also find roots

Answer» The given equation is:(3k + 1)x2 + 2(k + 1)x + 1 = 0This is of the form\xa0ax2\xa0+ bx + c = 0, wherea = 3k + 1, b = 2(k + 1) = 2k + 2 and c = 1As it is given that the given equation has real and equal roots, i.e.,\xa0D = b2\xa0- 4ac = 0.\xa0{tex}\\Rightarrow{/tex}\xa0(2k + 2)2\xa0- 4(3k + 1) (1) = 0{tex}\\Rightarrow{/tex}\xa04k2\xa0+ 8k + 4 - 12k - 4 = 0{tex}\\Rightarrow{/tex}\xa04k2\xa0- 4k = 0{tex}\\Rightarrow{/tex}\xa04k(k - 1) = 0\xa0Therefore, either 4k = 0 or k - 1 = 0{tex}\\Rightarrow{/tex}\xa0k = 0 or k = 1Hence, the roots of given equation are 1 and 0.
38971.

Hlw DV

Answer» Hm hi
I am online now
Tum kitne bje online hoge
Hii
38972.

Thales theorem

Answer» Parallel to one side of single a triangle to intersect the other two side in distance. Then the other two sides are divided in the same ratio
38973.

10 application problem related to Euclid division lemma

Answer»
38974.

If 2/3 and 1/5 are the zeros of the polynomial p(x)=3x^4+4x+9kxThen find k

Answer»
38975.

End term of A.p:17,14,11..-40

Answer» A.P. is 17,14,11,..., - 40We have,l = Last term = -40 , a = 17 and, d = Common difference= 14 - 17 = - 3{tex}\\therefore{/tex}\xa06th term from the end = l - (n -1)d=\xa0l - (6-1) d= -40 - 5 {tex}\\times{/tex} (-3 )= -40 + 15= -25So, 6th term of given A.P. is -25.
38976.

Find the value of k for which the quadratic equation 9x2– 3kx + k = 0 has equal roots.

Answer» Poda mythandi mone
38977.

Easy revise for lesson

Answer» Get revision notes from here :\xa0https://mycbseguide.com/cbse-revision-notes.html
38978.

Bhai ncert syllabus kab half hoga

Answer» 2019 .. next batch of class 10th???
???
Half nhi hoga whole course aayega final me
38979.

Find the coordinates of the point which divides the join of (-1,7)( 4,-3)in the tatio 2:3

Answer» (1,3)
38980.

If x=2/3 & x=-3 are the roots of equation ax2 +7x+b=0 find the value of a and b .

Answer» a=3,b=-6
38981.

Arithmetic progression exercise no 3

Answer» given a3=15,S10=125,find d and a10
38982.

What is ogive explain in detail

Answer» In statistics, an ogive is a graph showing the curve of a cumulative distribution function. The points plotted are the upper class limit and the corresponding cumulative frequency. The ogive for the normal distribution, resembles one side of an Arabesque or ogival arch.
38983.

Easy formula. Of. Hcf

Answer» Prime Factorisation method-Express each one of the given numbers as the product of prime factors.The product of least powers/index of common prime factors gives H.C.F.Find the H.C.F. of 8 and 14 by Prime Factorisation method.Solution: 8 = 2 x 2 x 2 and 14 = 2 x 7Common factor of 8 and 14 = 2.Thus, Highest Common Factor (H.C.F.) of 8 and 14 = 2.
38984.

Are oswall sample papers good for board exams??

Answer» Yes but only for practising.just don\'t carry it too long.it is recommended to read the book☺☺☺☺
38985.

Tutak tutak tutiya

Answer» Is a movie by prabhudeva
38986.

maximum marks of board exam

Answer» 500
38987.

What would be the best guide book for mathematics class10?

Answer» Ncert is best but for more practice you take RS AGRAWAL or RD SHRMA
ND
Rd sharma
Monica sharma
Rd sharma ,to gether with , Agrawal
together with, Ncert exampler book
Rs agrawal , rd sharma ,
38988.

sin A (1+ tan A)+ cos A(1 + cot A) (sec A+ cosec A)

Answer»
38989.

Hello.friends

Answer» hi
Is anyone online
38990.

Trigonometry ratios

Answer» Sinθ=opposite/hypotenuseCosθ=adjacent/hypotenuseTanθ=opposite/adjacentCosecθ=hypotenuse/oppositeSecθ=hypotenuse/adjacentCotθ=adjacent/oppositeTanθ= Sinθ/CosθCosecθ=1/SinθSecθ=1/CosθCotθ=1/Tanθ
sinA = p\\hcosA=b\\htanA=p\\bcosecA=h\\psecA=h\\bcotA=b\\p
38991.

If the product of the zeros of the polynomial 3x square +5x -4k is -8,then find the value of k

Answer» put x = -8\xa0in\xa0{tex}3x^2 + 5x - 4k = 0{/tex}{tex}3(-8)^2 + 5(-8)-4k = 0\xa0{/tex}{tex}3(-8)^2 + 5(-8)\xa0- 4 k = 0{/tex}\xa0192 - 40 - 4k\xa0= 0152 = 4k{tex}\\Rightarrow{/tex}\xa0k =\xa028{tex}\\therefore{/tex}\xa0k = 28
38992.

Whi which of the following cannot be the unit digit of a perfect square number a 6 V 1 C 98

Answer»
38993.

if the sum of p term of an Ap is same as the sum of q term show that the sum of q and p is zero

Answer» Sp = Sq{tex} \\Rightarrow \\frac{p}{2}\\left[ {2a + (p - 1)d} \\right] = \\frac{q}{2}\\left[ {2a + (q - 1)d} \\right]{/tex}{tex} \\Rightarrow p\\left[ {2a + pd - d} \\right] = q\\left[ {2a + qd - d} \\right]{/tex}{tex} \\Rightarrow {/tex}\xa02ap + p2d - pd = 2aq + q2d - qd{tex} \\Rightarrow {/tex}\xa02a (p - q) + (p2 - q2)d - (p - q)d = 0{tex} \\Rightarrow {/tex}\xa02a (p - q) + (p + q) (p - q)d - (p - q)d = 0{tex} \\Rightarrow {/tex}\xa0(p - q) [2a + (p + q - 1)d] = 0{tex} \\Rightarrow {/tex}\xa0Sp+q = 0
38994.

[A+b]^2

Answer» a²+2ab+b²
A^2 +2 AB +^2
A^2+b^2+2Ab
38995.

3 × 3

Answer» Go! before classes 1
9
6
38996.

2017 sa1question paper class 10

Answer» Check Question Papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
38997.

Divide 123089 by10764

Answer» 11.43524712.
38998.

What is tan theta

Answer» tan theta = 1÷cot theta also tan theta=sin theta ÷cos theta
Ratio of sin theta to cos theta
38999.

If (x2+ y2) (a2+ b2) = (ax + by)2. Prove that .

Answer» Given,\xa0{tex}\\left( x ^ { 2 } + y ^ { 2 } \\right) \\left( a ^ { 2 } + b ^ { 2 } \\right) = ( a x + b y ) ^ { 2 }{/tex}or,{tex}x ^ { 2 } a ^ { 2 } + x ^ { 2 } b ^ { 2 } + y ^ { 2 } a ^ { 2 } + y ^ { 2 } b ^ { 2 } = a ^ { 2 } x ^ { 2 } + b ^ { 2 } y ^ { 2 } + 2 a b x y{/tex}or,\xa0{tex}x ^ { 2 } b ^ { 2 } + y ^ { 2 } a ^ { 2 } - 2 a b x y = 0{/tex}or,{tex}( x b - y a ) ^ { 2 } = 0{/tex}\xa0{tex}\\left[ \\because ( a - b ) ^ { 2 } = a ^ { 2 } + b ^ { 2 } - 2 a b \\right]{/tex}or,\xa0xb = ya{tex}\\therefore \\quad \\frac { x } { a } = \\frac { y } { b }{/tex}\xa0Hence Proved.
39000.

Prove that root 5 minus root 3 is not a rational number

Answer»