Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

5201.

Obtain the following integrals : int (sinx+cosx)/(sqrt(1+sin (2x)))dx

Answer»


ANSWER :`:. I=x+C`
5202.

int(cotx cot(x + alpha) +1)dx=

Answer»

`COT alphalog(ABS((sinx)/(sin(x+ ALPHA))))+c`
`logabs(sinx sin(x + alpha))+x+c`
`log abs(sinx COS(x+ alpha))+x + c`
`tan alphalog(abs((cosx)/(sin(X+alpha))))+c`

Answer :A
5203.

Find the values of x and y, if 2{:[(1,3),(0,x)]+{:[(y,0),(1,2)]={:[(5,6),(1,8)]:}

Answer»


ANSWER :X =3, y = 3
5204.

Construct a 3xx4 matrix , whose elements are given by : (i)a_(ij)=(1)/(2)|3i+j| (ii)a_(ij)=2i-j

Answer»


ANSWER :(i) `=[{:(1,(1)/(2),0,(1)/(2)),((5)/(2),2,(3)/(2),1),(4,(7)/(2),3,(5)/(2)):}]`
(II) `=[{:(1,0,-1,-2),(3,2,1,0),(5,4,3,2):}]`
5205.

Let f(x)=2 tan^(-1)((1-x)/(1+x))

Answer»

STATEMENT-1 True statement -1 is True,Statement -2is True statement -2 is a correct explanation for Statement-5
Statement-1 True statement -1 is True,Statement -2is True statement -2 is not a correct explanation for Statement-5
Statement-1 True statement -1 is True,Statement -2is False
Statement-1 is False ,Statement -2 is True

SOLUTION :`f(x)=2tan^(-1)""(1-x)/(1+x)(tan^(-1)-tan^(-1)x)"-="pi/2-2tan^(-1)""x`
`rArr f(x)=-(2)/(1+x^2)lt0 for all x in [0,1]`
`rArr f(x)` decreases on [0,1]
`rArr ` Range of `f=[f(1),f(0)]=[0,pi//2]`
Hence both the STATEMENTS are ture and statement are ture and statement -2 is a correct explanation of statement - 1
5206.

H_(2)S gas is not evolved when SO_(3)^(2-) ion reacts with following reagents.

Answer»

An+dil.`H_(2)SO_(4)`
Al + conc. NaOH
Al + dil. HCl
None of these

Solution :`SO_(3)^(2-)+2Al+2OH^(-)+3H_(2)OrarrS^(2-)+2[Al(OH)_(4)]^(-)`
`H_(2)S` does not evolve as LIBERATED `H_(2)S` is neutralised by NaOH and `Na_(2)S` is FORMED.
5207.

Coffiecient of x^3 in the expansion of e^(-bx)

Answer»

`(-b^3)/6`
`(b^3)/6`
`(b^3)/3`
`(-b^3)/3`

ANSWER :A
5208.

If the standard deviation of 0,1,2,3,4,5,6,7,8,9 is K, then the standard deviation of 10,11,12,…,19 is

Answer»

K
K +10
`K + SQRT(10)`
10 K

Answer :A
5209.

Lines L_(1) : y-c=0 and L_(2) : 2x+y=0 intersect the line L_(3) : y+2=0 at P and Q respectively. The bisector of the acute angle between L_(1) and L_(2) intersects L_(3) at R. Statement I The ratio PR : RQ equals 2sqrt(2) : sqrt(5). Because Statement II In any triangle, bisector of an angle divides the triangle into two similar triangles.

Answer»

STATEMENT I is true, Statement II is also true, Statement II is correct explanation of Statement I
Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I
Statement I is true , Statement II is false
Statement I is false , Statement II is true

Solution :It is not necessary that the bisector of an angle will DIVIDE the triangle into TWO similar triangles, therefore, statements II is false.
Now, we verify Statement I.
`DeltaOPQ`, `OR` is the internal bisector of `/_POQ`.
`:. (PR)/(RQ)=(OP)/(OQ)`
`IMPLIES(PR)/(RQ)=(sqrt(2^(2)+2^(2)))/(sqrt(1^(2)+2^(2)))=(2sqrt(2))/(sqrt(5))`
5210.

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them :(a) 7x + 5y + 6z + 30 = 0 and 3x - y-10z + 4 = 0(b) 2x + y + 32 - 2 = 0 and x - 2y + 5 = 0(c) 2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z-1 = 0(d) 2x – y + 3z-1 = 0 and 2x - y + 3z + 3 = 0(e) 4x + 8y + z - 8 = 0 and y + z - 4 = 0

Answer»


ANSWER :(a) `therefore theta=cos^(-1)(2/5)`
(B) `=0`
(c) `=2/3`
`therefore` NORMAL of the PLANES are parallel
`therefore` Given planes are parallel
(d)`therefore` Normal of the planes are parallel
`therefore` Given planes are parallel
(e) `therefore theta=45^@`
5211.

Differentiate w.r.t.x the function in Exercises 1 to 11. sin^(3)x+ cos^(6)x

Answer»


Answer :`3 SIN X COS x(sin x-2 cos^(4)x)`
5212.

If alpha, beta, gamma are roots of x^(3) +4x+1=0, then (alpha+beta)^(-1) +(beta+gamma)^(-1) +(gamma+alpha)^(-1) equals

Answer»

2
3
4
5

Answer :C
5213.

Arrange the following according to their values in ascending order A) int_(0)^(1) sqrt(1-x^(2))dx B) int_(0)^(1) (1)/(sqrt(1-x^(2)))dx C) int_(0)^(1//sqrt(3))(1)/(1+x^(2))dx

Answer»

A, B, C
C, B, A
C, A, B
A, C, B

Answer :C
5214.

thetangent andnormaltothetangentto theellipse(x^(2))/(a^(2))+(y^(2))/(b^(2))=1at thepoint(3,(-9)/(2)),thenthe area( in sq units ) oftheDeltaPQRIs

Answer»

`(16)/(3)`
`(14)/(3)`
`(34)/(15)`
`(68)/(15)`

Solution :Equationof givenellipse is
` 3x^(2) +5y^(2)=32`
bnow,the slopeof tangent andnormalat POINT `P(2,2)` totheellipse(i) areresectively
`m_(T)=(dy)/(dx)|_(""(2,2))and m_(N)=-(dx)/(dy)|_((2,2)"")`
ondiferntiatingellipse(i) w.R.tx, weget
`6x+10y(dy)/(dx)=0implies (dy)/(dx)=-(3x)/(5y)`
`SoM_(T) =-(3x)/(5y)|_((2,2)"")=-(3)/(5) andm_(N) = (5y)/(3Y)|_((2,2)"")=(5)/(3)`
Nowequationof tangentand normal tothegivenellipse(i) atpointP(2,2) are
`(y-2)=-(3)/(5)(x-2)`
and `(y-2)=(5)/(3)(x-2)` RESPECTIVLY.
It isgiventhat pointif INTERSECTIONOF tangentandnormalare Qand RAt X- axisRespectively.
so, `Q((16)/(3),0) and R((4)/(5) ,0)`
`therefore ` Area of`DeltaPQR =(1)/(2)(QR)xx"height "`
`=(1)/(2) xx(68)/(15)xx2=(68)/(15) sq units `
`[ :'QR= sqrt(((16)/(3)-(4)/(5))^(2))=sqrt(((68)/(15))^(2))` = (68)/(15)` andheight= 2]
5215.

Integration by partial fraction : int(x-1)/((x-3)(x-2))dx=....

Answer»

`LOG(x-3)-log(x-2)+C`
`log(x-3)^(2)-log(x-2)+c`
`log(x-3)+log(x-2)+c`
`log(x-3)^(2)+log(x-2)+c`

ANSWER :B
5216.

Solve the inequation (sqrt(6+x-x^(2)))/(2x+5) ge (sqrt(6+x-x^(2)))/(x+4).

Answer»


ANSWER :`[-2, -1] CUP {3}`
5217.

If A is square matrix of order 2 and A^2+A+2I=0 then

Answer»

A can not be a skew-symmetric MATRIX
`|A+l|=0`
A is ONE SINGULAR and `A^(-1)=(A+l)^(-1)`
`|A||A+l|=2`

ANSWER :A
5218.

Number of words consisting of two vowels and two consonants which can be made out of the letters of word "DEVASTATION" is

Answer»

126
198
1512
1638

Solution :DVSTIN, EAAIO :
`(.^(5)C_2 XX .^(4)C_(2))4 ! + .^(5)C_(2) (4!)/(2!) + .^(4)C_(2) (4!)/(2!) + 1 + (4!)/(2!2!)`
5219.

Name the square matrix A=[a_(ij)] in which a_(ij)=0, i!=j.

Answer»


ANSWER :DIAGONAL MATRIX
5220.

int_(0)^(1)x(1-x)^(10)dx=

Answer»

`(1)/(112)`
`(1)/(132)`
`(1)/(246)`
`(1)/(92)`

Answer :B
5221.

int (a + b sin x )/((b+ a sin x )^(2))dx =

Answer»

`(- COS X )/(b + a SIN x ) +C`
`(cos x )/(b + a sin x )` + c
`(sin x)/(b + a sin x )+ c`
`(- sin x )/(b +a sin x )+ c `

Answer :A
5222.

In the following cases, determine whether the given planes are parallel or perpendicular and in case they are neither, find the angle between them.(i) 2x – y + z = 6 and x + y + 2z = 7(ii) vecr.(hati-hatj+hatk) and vecr.(3hati+2hatj-hatk)-11=0(iii) x + y – 2z = 3 and 2x – 2y + z = 5(iv) 2x – 3y + 4z = 1 and -x + y = 4(v) vecr.(2hati+3hatj-6hatk)=5 and vecr.(hat i - 2 hatj+2hatk)=9

Answer»


ANSWER :(i) `pi/3`
(ii) `pi/2`
(iii) `cos^(-1)((2)/(3sqrt6))`
(IV) `cos^(-1)((5)/(sqrt(58)))`
(v) `cos^(-1)((16)/(21))`
5223.

Find the co-ordinates of the point where the line (x+1)/(2)=(y+2)/(3)=(z+3)/(4) cross the planel x + y + 4z = 6.

Answer»


ANSWER :(1,1,1)
5224.

Express with rational denominator(a+xsqrt(-1))/(a-xsqrt(-1))-(a-xsqrt(-1))/(a+xsqrt(-1))

Answer»

SOLUTION :`(a=xsqrt(-1))/(a-xsqrt(-1))-(a-xsqrt(-1))/(a+xsqrt(-1))`
`=(x+ix)/(a-ix)-(a-ix)/(a+ix)=((a+ix)^2-(a-ix)^2)/((a-ix)(a+ix))`
`=(4aix)/(a^2-i^2x^2)=(4aix)/(a^2+x^2)`
5225.

int_(0)^(pi//2) sin^(8) x. cos^(2)x dx=

Answer»

`PI/(512)`
`(3PI)/(512)`
`(5PI)/(512)`
`(7pi)/(512)`

ANSWER :D
5226.

There are two perpendicular lines, one touches to the circle x^(2) + y^(2) = r_(1)^(2) and other touches to the circle x^(2) + y^(2) = r_(2)^(2) if the locus of the point of intersection of these tangents is x^(2) + y^(2) = 9, then the value of r_(1)^(2) + r_(2)^(2) is.

Answer»


ANSWER :9
5227.

If (1 div 3p)/(3), (1-p)/(4), (1-2p)/(2) are the probabilities of 3 mutually exclusive events then find the set of all values of p.

Answer»


Answer :`therefore (1)/(3) LE p le (1)/(2)`
5228.

The total numberof relation fromtheset{p,q} to the set{e,f} is-

Answer»

16
32
56
4

5229.

A random veriable X takes the values 0,1 and 2. If P(X =1) = P(X=2) and P(X =0) = 0.4 , then the mean of random veriable X is

Answer»

0.2
0.7
0.5
0.9

Answer :D
5230.

A plane passes through the points (1, 1, 1). If b, c, a are the direction ratios of a normal to the plane where a, b, c (a lt b lt c) are the prime factors of 2001, then the equation of the plane is:

Answer»

`29x + 31y + 3z = 63`
`23x + 29Y – 29z = 23`
`23x + 29y + 3z = 55`
`31x + 37Y + 3z = 71`

Solution :The equation of the plane is
`b(x-1)+c(y-1)+a(z-1)=0`
Now, `2001=3xx23xx29`
`THEREFORE a lt b ltc rArr a = 3, b=23 and c=29`
Substituting the VALUES of a, b, c in (i), we obtain
`23x+26y+3z=55` as the equation of the required plane.
5231.

The solution of (dy)/(dx) = (x log x^(2) + x)/(sin y + y cos y) is

Answer»

`y SIN y = X^(2) log x + c`
`y sin y = x^(2) + c`
`y sin y = x^(2) + log x + c`
`y sin y = x log x+ c`

ANSWER :A
5232.

Two unbiased dice are thrown. The probability that sum of the numbers appearing on the top face of two dice is 12, if 6 appears on the top face of first dice is ……….

Answer»

`(1)/(36)`
`(1)/(6)`
`(5)/(6)`
`(5)/(36)`

ANSWER :B
5233.

Equation of the tangent line to the curve y= int_(0)^(x) cos theta d theta at x= pi/2 is

Answer»

`x=0`
`y=0`
`x=1`
`y=1`

ANSWER :D
5234.

Differentiate w.r.t.x the function. sin^(3)x+ cos^(6)x

Answer»


ANSWER :`3 sin X COS x(sin x-2 cos^(4)x)`
5235.

Ifalpha, beta, gammaare therootsofx^3 -px^2+qx -r=0andr ne 0thenfind(1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma^2)in termsof p,q ,r

Answer»


ANSWER :`(q^2 -2 RP^(-))/( r^2)`
5236.

Entries of a 2xx2 matrix are chosen from the set {0,1}. The probability that the determinant has zero value is

Answer»

`(1)/(4)`
`(1)/(3)`
`(1)/(6)`
`(5)/(8)`

ANSWER :D
5237.

If the vertices of a diagonal of a square (-2, 4) and (-2, 2) then its other two vertices are

Answer»

(1,-1) and (5, 1)
(1, 1) and (5, 1)
(1, 1) and (-5, 1)
NONE of these

Answer :D
5238.

Let C_(1) :x^(2)+y ^(2) =a ^(2) be a circle. From a pointA(-a,0) chord AB is crawn, at point B tangent is drawn to the circle. On the tangent through B, at a distance 'r' from B is a point P. Find the locus of mid point of AP.

Answer»


ANSWER :`=> (x+ a//2)^(2) + y^(2) = (a ^(2) + R ^(2))/(4)` is the locus of mid POINT of PA
5239.

A line (x-3)/(1) = (y-6)/(5) = (z-4)/(4) is in the plane which passes through (3,2,0). The normal to the plane is .........

Answer»

(1,1,1)
(-1,1,1)
(1,-1,1)
(-1,-1,1)

ANSWER :C
5240.

Three persons A,B,C in order cut a pack of cards replacing them after each cut. The person who first cuts a spade shall win a prize. The probability that C wins the prize is

Answer»

`(16)/(37)`
`(9)/(37)`
`(12)/(37)`
`(1)/(37)`

Answer :B
5241.

Consider the following system of equations : x^2 + y^2 -x-y=10 x^2 + y^2 -5x + 3y=4 What is the value of 2x-2y ?

Answer»

6
5
4
3

Answer :D
5242.

sec((pi)/(4) + theta ) . Sec ((pi)/(4)- theta ) isequalto

Answer»

`SEC ^2(pi)/(4) - "COSEC" ^2THETA `
1
0
`2 sec ^2 theta `

Answer :D
5243.

Use product{:[( 1,1,2),( 0,2,3),( 3,2,4) ]:} {:[( 2,0,1),(9,2,3),(6,1,2) ]:}to solve the system of equations x-y+2z=1 xy-3z=1 3x-2y+4z =2

Answer»


ANSWER :` {:(0,1,-2),(-2,9,-23),(-1,5,-13):},x=1,y=2,z=3`
5244.

Express in the form((a+ib)^3)/(a-ib)-((a-ib)^3)/(a+ib)

Answer»

Solution :`((a+ib)^3)/(a-ib)-((a-ib)^3)/(a+ib)`
`=((a+ib)^4-(a-ib)^4)/((a-ib)(a+ib))`
`OVERSET((a^4+4a^3ib+6a^2i^2b^2+4ai^3b^3+i^4b^4))underset(-(a^4-4a^3ib+6a^2i^2b^2-4ai^3b^3+i^4b^4))"/(a^2-i^2b^2)`
`=(8a^3ib+8ai^3b^3)/(a^2+b^2)=(8a^3ib-8aib^3)/(a^2+b^2)`
`(8abi(a^2-b^2))/(a^2=b^2)=0+(8ab(a^2-b^2)i)/(a^2+b^2)`
5245.

Construct 2 xx 2matrix A=[aij] whose elements are given by: a_(ij) = 1/2|-3i + j|

Answer»


ANSWER :`[{:(1,1/2),(5/2,2):}]`
5246.

The maximum possible number of real roots of the equation x^(5)-6x^(2)-4x+5=0, is

Answer»

0
3
4
5

Answer :B
5247.

If m_(1) and m_(2) are the roots of the equation x^(2) + (sqrt3 + 2) x + (sqrt3 - 1) = 0then the area of the triangle formed by the lines x = m_(1) x , y = m_(2) x and y = c , is

Answer»

`((sqrt(33) - sqrt(11))/(4))C^(2)`
`((sqrt(33) + sqrt(11))/(4)) c^(2)`
`((sqrt(11) - sqrt(33))/(2))c^(2)`
`(sqrt(33))/(2) c^(2)`

Answer :B
5248.

Let M_n =[m_g] denotes a square matrix of order n with entries as follows for1 le 1le n,m_n = 10 : for 1 le 1 le n-1 m_n +1,=m_(li+1) =3 and all other entries in M_n are zero , Let D_n be the determinant of matrix M_(nr)then find the value of (D_3 9D_2)

Answer»

0
1
2
none of these

ANSWER :B
5249.

Observe the following statements : Statement-1 : The probabilities of the events A,B and C are respectively (2)/(3), (1)/(4) and (1)/(6) then A,B,C are exhaustive Statement-2 : If the probability for A to fail in an examination is 0.2 and that for B is 0.3 then the probability that either A or B fails is 0.5 Statement-3 : If A and B are two independent events then P(AnnbarB)+P(A)P(B)=P(A) Which of the above are false

Answer»

`S_(1),S_(2)`
`S_(2),S_(3)`
`S_(1),S_(3)`
all the above

Answer :A
5250.

Which of the following set is pair of isoster species.

Answer»

`PO_4^(3-), ClO_3^-`
`BO_3^(3-),B_3N_3H_6`
`CO_2,CO_3^(2-)`
`NO^(o+),CO`