InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 5251. |
{:(,"List-I",,"List-II"),((A),"If "tanA=(1)/(2)tanB=(1)/(3)", then "tan(2A+B)" is",(i),0),((B),"Value of "sin50^(@)-sin70^(@)+sin10^(@)" is equal to",(ii),3),((C),"Number of solutions of "tanx+secx=2cosx" laying in "[0,2pi]" is" ,(iii),(1)/(2)),((D),"Greatest value of sin x cos x is",(iv),2):} |
|
Answer» |
|
| 5252. |
Integrate the following rational functions : int(3x+1)/((x-2)^(2)(x+2))dx |
|
Answer» |
|
| 5253. |
If A and B are independent events,show that A^c and B^c are independent, |
|
Answer» SOLUTION :A and B are independent events. We have P`(A cap B)`=P(A).P(B) `THEREFORE P(A. cap B.)=P(A CUPB).=1-P(AcupB)` =[1-P(A)][1-P(B)]=P(A.)P(B.)`therefore`A. and B. are independent events. |
|
| 5254. |
Theprababilitydistribution of a randomvariablex isgivenbelow{:(x=k,0,1,2,3,4),(p(x=k),0.1,0.4,0.3,0.2,0):} ThevarianceofXis |
|
Answer» `1.6` |
|
| 5255. |
A block of mass 2 kg is resting on a frictionless plane. It is struck by a jet releasing water at a rate of 1 kg/s with speed 5 m/s. The initial acceleration of the block will be :- |
|
Answer» `2.5 m//s^(2)` |
|
| 5256. |
If I_(n)=intsin^(n)xdx, " for "n=1, 2, 3... " then "8I_(8)+7(I_(7)-I_(6))-6I_(5)= |
|
Answer» `-sin^(6)xcosx(1+sinx)+C` |
|
| 5257. |
Find the number of 4-digit numbers that can be formed using the digits 2,3,5,6,8 (without repetition). How many of them are divisible byi) 2 ii) 3 iii) 4 iv) 5 v) 25 |
|
Answer» <P> |
|
| 5258. |
If z is a point on the Argand plane such that |z-1|=1, then (z-2)/z is equal to |
|
Answer» TAN(arg)Z So, LET `z-1=costheta+isintheta` `rArr z-2=sintheta//2(-sintheta//2+icostheta/2)` and `z=2costheta//2(costheta//2+isintheta//2)` and, `z=2costheta//2(costheta//2+isintheta//2)` `rArr (z-2)/(z)=i{(costheta/2+isintheta/2)/(costheta/2+isintheta/2)}tantheta/2` `rArr (z-2)/z = itantheta/2 rArr (z-2)/z=i tan(arg z)` |
|
| 5259. |
Which condition of Rolle's theorem is violated by the functionf(x) =| x| in [-1,1] |
| Answer» SOLUTION :F(x) = | x |is not differentiable at `x=0 in [-1,2]THEREFORE`f is differentiable on (-1,1) is VIOLATED. | |
| 5260. |
If f(x) = x [x], then for any real number a and b with a lt b, then value of int_(a)^(b) f (x) dx equals |
|
Answer» `(1)/(3) (|B|^(3) - |a|^(3) )` |
|
| 5261. |
If |z_(1)+z_(2)|=|z_1|+|z_2| then |
|
Answer» `z_(1)" and "z_(2)` are real |
|
| 5262. |
If a, b, c are positive real numbers, then for the system of equations x^(2)/a^(2)+y^(2)/b^(2)-z^(2)/c^(2)=1,x^(2)/a^(2)-y^(2)/b^(2)+z^(2)/(c^(2))=1,-x^(2)/a^(2)+y^(2)/b^(2)+z^(2)/c^(2)=1 there is : |
|
Answer» no solution |
|
| 5263. |
The values of gammaandmu for which the vectors a=2hat(i)+lamdahat(j)-hat(k) is perpendicular to the vector vec(b)=3hat(i)+hat(j)+muhat(k) with |vec(a)|=|vec(b)| are |
|
Answer» `LAMDA=(41)/(12),mu=(31)/(12)` |
|
| 5264. |
Threedifferentfunctionsaredefinedin thetablebelow . Thediagrambelowusesfunctions. Theonlyvaluesforp,q,r,s andt are 1and 0 . Whichof thefollowinginputs (p,q,r,s,t)willproducetheoutput0 ? |
|
Answer» `(0,1,1,0,1)` |
|
| 5265. |
Fill int the blanks choosing correct answer from the bracket. If a = 12, b = 7 , C = 30^@, then Delta = _____. |
|
Answer» 42 |
|
| 5266. |
Find the area of the region enclosed by the given curves . y=x^(3)+3, y=0 , x=-1, x=2 |
|
Answer» |
|
| 5267. |
If e is the eccentricity of the hyperbol and r is the radius of the circle x^(2) + y^(2) - 6x - 18y + 87 = 0, then the value of er is equal to |
|
Answer» `2sqrt(3)` |
|
| 5268. |
If sinA+sinB=a and cosA+cosB=b, show that cos(A+B) = (b^2-a^2)/(b^2+a^2) |
|
Answer» SOLUTION :COS(A+B) =(1-tan^2((A+B)/2)/(1+tan^2((A+B)/2) = (1-a^2/b^2)/(1+a^2/b^2) = (b^2-a^2)/(b^2+a^2)` |
|
| 5269. |
Find the points on the curve y= cos x-1 in x in [0, 2pi], where the tangent is parallel to X-axis. |
|
Answer» |
|
| 5270. |
Leta =2 hati+ hatj- 3 hatkand b - hati+ 3 hatj+ 2 hatk .then thevolumeof theparallelopipedhavingcoterminous edgesas a,b, and cwherec isthevectorperpendicularto theplaneof a,band|c|=2 is |
|
Answer» `2sqrt(195)` |
|
| 5271. |
If 2^2006 - 2006 divided by 7, the remainder is |
|
Answer» 0 |
|
| 5272. |
If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))|!= 0|(a_(1)+b_(1)x, a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3))|=0 then x= |
|
Answer» 0 |
|
| 5273. |
If z=-1, then principal value of arg(z^(2//3)) is |
| Answer» Answer :A | |
| 5274. |
The shortest distance between (0 , 0, 0) and (2sint, 2cost,3t) is : |
|
Answer» 4 |
|
| 5275. |
If f(x) =|{:(sin^(2)x+,cos^(4)xIncos x,(1)/(1+(tanx)^(sqrt(2)))),(pi,pi^(2),pi^(4)),((7)/(16),-(1)/(2)In2,(1)/(4)):}| the value off_(0)^(pi//2)f(x) dx is |
|
Answer» 2 |
|
| 5276. |
If A,B,C are projections of P(3,4,5) on the coordinate planes, find PA , PB and PC. |
| Answer» SOLUTION :PA=5 ,PB =3, PC=4. | |
| 5277. |
A coin is tossed three times{:(" E "": ""head on third toss"," F "": ""head on first two tosses"):}.Find P(E//F) |
|
Answer» |
|
| 5278. |
Let ABCD be a square with sides of unit lenght. Points E and F are taken on sides AB and AD, respectively,so that AE=AF. Let P be a point inside the squre ABCD. The value of (PA)^2-(PB)^2+(PC)^2-(PD)^2 is equal to |
|
Answer» 3 `(PA)^2-(PB)^2+(PC)^2-(PD)^2` `=(alpha^2+gamma ^2)-(alpha^2+delta^2)+(delta^2+beta^2)-(gamma^2+beta^2)=0` |
|
| 5279. |
Let ABCD be a square with sides of unit lenght. Points E and F are taken on sides AB and AD, respectively,so that AE=AF. Let P be a point inside the squre ABCD. Let a line passing through point A divides the sqaure ABD into two parts so that the area of one portion is double the other. then the length of the protion of line inside the square is |
|
Answer» `SQRT(10)//3` or `y=(2)/(3)` `THEREFORE AQ=sqrt((1)^2+(2/(3))^2) =(sqrt13)/(3)`
|
|
| 5280. |
The plane ax + by + cz = 1 intersects the axes in A, B and C respetively. The centroid of Delta ABC is G (1/6, -1/3 , 1). Then a + b + 3c = ....... |
| Answer» ANSWER :A | |
| 5281. |
If * is a binary operation in N defined as a*b=a^(3)+b^(3) , then which of the following is true : (i) * is associative as well as commutative. (ii) * is commutative but not associative (iii) * is associative but not commutative (iv) * is neither associative not commutative. |
|
Answer» |
|
| 5283. |
Let vec(a),vec(b) and vec(c ) be three coterminous edges ofa tetrahedron with volume (1)/(3)then volume of a parallelopiped whose non-parallel sides are given by vec(a)xxvec(b),vec(b)xxvec(c)"and" vec(c ) xx vec(a) is |
Answer» Solution :![]() AREA `(1)/(2)xx2pixx2pi=2pi^(2)` |
|
| 5284. |
Two players A and B each toss 10 coins. The probability that they show equal number is heads is |
|
Answer» `(.^(20)C_(10))/(2^(20))` |
|
| 5285. |
If alpha=(pi)/21 then (sin 3 alpha+sin 7 alpha)/(sin 24 alpha+sin 14 alpha)= |
| Answer» Answer :C | |
| 5286. |
Construct a_(2xx2) matrix where (i)a_(ij)=((i-2j)^(2))/(2) (ii)a_(ij)=|-2i+3j| |
|
Answer» (II) `=[{:(1,4),(1,2):}]_(2xx2` |
|
| 5287. |
Evaluate :|{:(1, cosec ^(2) theta, cot ^(2) theta),(-1 , cot ^(2) theta, cosec ^(2) theta),(2,(9)/(2), (5)/(2) ):}|a) -1 b) 1 c) 0 d) None of these |
|
Answer» `-1` |
|
| 5288. |
[ 2+6-2+78-10] = |
|
Answer» |
|
| 5289. |
Examine the existence of the following limits:lim_(xto0-)e^(1/x) |
|
Answer» SOLUTION :`lim_(xto0-)e^(1/x)=0` because as `xto0-,1/xto-infty` So `e^(1/x)to0` `therefore` The limit EXISTS. |
|
| 5290. |
Examine the existence of the following limits:lim_(xto0+)e^(1/x) |
|
Answer» SOLUTION :`lim_(xto0+)E^(1/x)=lim_(xto0)e^(1/x)=e^infty=infty` The LIMIT not EXISTS. |
|
| 5291. |
int (x^(4) + 2x-1) sin 3x dx. |
|
Answer» |
|
| 5292. |
Ify=tan^-1((3x-x^2)/(1-3x^2)), (-1)/sqrt3ltxlt1/sqrt3Find (dy)/(dx) |
| Answer» SOLUTION :`y=tan^-1((3x-x^3)/(1+3x^2))=3tan^-1xtherefore(DY)/(DX)=3xx1/(1+x^2)=3/(1+x^2)tan^-1((3x-x^2)/(1+3x^2))=3tan^-1x` | |
| 5293. |
If [x] represents the greatest integer function and f(x)=x-[x]-cos x" then "f^(1)(pi/2)= |
|
Answer» 1)2 |
|
| 5294. |
Approximately how many more miscellaneous public transit vehicles than public transit trolley buses were there in 2000? |
|
Answer» 1000 |
|
| 5295. |
Cartesian form of the eqution of line barr=3hati-5hatj+7hatk+lambda(2hati+hatj-3hatk) is |
|
Answer» `(x-2)/(3)=(y-1)/(-5)=(z+3)/(7)` |
|
| 5296. |
The straight line x-2y+5=0 intersects the circle x^(2)+y^(2)=25 in points P and Q, the coordinates of the point of the intersection of tangents drawn at P and Q to the circle is |
|
Answer» (25, 50) |
|
| 5297. |
The sum of all the numbers that can be formed by takingall digits 2,3,4,4,5 onlyis |
|
Answer» 2399976 |
|
| 5299. |
The length of the common chord of the circles x^2+y^2+ax+by+c=0 and x^2+y^2+bx+ay+c=0 is |
|
Answer» |
|
| 5300. |
{:(" " Lt),(n rarroo):}(1)/(n^(2)) sum_(r=1)^(n) r.e^(r//n)= |
|
Answer» e |
|