Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

5251.

{:(,"List-I",,"List-II"),((A),"If "tanA=(1)/(2)tanB=(1)/(3)", then "tan(2A+B)" is",(i),0),((B),"Value of "sin50^(@)-sin70^(@)+sin10^(@)" is equal to",(ii),3),((C),"Number of solutions of "tanx+secx=2cosx" laying in "[0,2pi]" is" ,(iii),(1)/(2)),((D),"Greatest value of sin x cos x is",(iv),2):}

Answer»


ANSWER :(A) `iff` (ii), (B) `iff` (i), (C ) `iff` (IV), (D) `iff` (iii)
5252.

Integrate the following rational functions : int(3x+1)/((x-2)^(2)(x+2))dx

Answer»


ANSWER :`(5)/(16)log|x-2|-(7)/(4(x-2))-(5)/(16)log|x+2|+c`
5253.

If A and B are independent events,show that A^c and B^c are independent,

Answer»

SOLUTION :A and B are independent events.
We have P`(A cap B)`=P(A).P(B)
`THEREFORE P(A. cap B.)=P(A CUPB).=1-P(AcupB)` =1[1-P(A)]-P(B)[1-P(A)]
=[1-P(A)][1-P(B)]=P(A.)P(B.)`therefore`A. and B. are independent events.
5254.

Theprababilitydistribution of a randomvariablex isgivenbelow{:(x=k,0,1,2,3,4),(p(x=k),0.1,0.4,0.3,0.2,0):} ThevarianceofXis

Answer»

`1.6`
`0.24`
`0.84`
`0.75`

ANSWER :C
5255.

A block of mass 2 kg is resting on a frictionless plane. It is struck by a jet releasing water at a rate of 1 kg/s with speed 5 m/s. The initial acceleration of the block will be :-

Answer»

`2.5 m//s^(2)`
`5 m//s^(2)`
`10 m//s^(2)`
`15 m//s^(2)`

ANSWER :A
5256.

If I_(n)=intsin^(n)xdx, " for "n=1, 2, 3... " then "8I_(8)+7(I_(7)-I_(6))-6I_(5)=

Answer»

`-sin^(6)xcosx(1+sinx)+C`
`sin^(8)xcosx+sin^(5)xcosx+c`
`-sin^(7)xcosx(1-sinx)+c`
`-cos^(7)XSINX(1+cosx)+c`

Answer :A
5257.

Find the number of 4-digit numbers that can be formed using the digits 2,3,5,6,8 (without repetition). How many of them are divisible byi) 2 ii) 3 iii) 4 iv) 5 v) 25

Answer»

<P>

Answer :`""^(P)_(4)` ,(i) 72 ,(II)48, (iii) 36, (IV) 24, (V) 6
5258.

If z is a point on the Argand plane such that |z-1|=1, then (z-2)/z is equal to

Answer»

TAN(arg)Z
cot(arg z)
itan (arg z)
NONE of these

Solution :We have, `|z-1|=1`
So, LET `z-1=costheta+isintheta`
`rArr z-2=sintheta//2(-sintheta//2+icostheta/2)`
and `z=2costheta//2(costheta//2+isintheta//2)`
and, `z=2costheta//2(costheta//2+isintheta//2)`
`rArr (z-2)/(z)=i{(costheta/2+isintheta/2)/(costheta/2+isintheta/2)}tantheta/2`
`rArr (z-2)/z = itantheta/2 rArr (z-2)/z=i tan(arg z)`
5259.

Which condition of Rolle's theorem is violated by the functionf(x) =| x| in [-1,1]

Answer»

SOLUTION :F(x) = | x |is not differentiable at `x=0 in [-1,2]THEREFORE`f is differentiable on (-1,1) is VIOLATED.
5260.

If f(x) = x [x], then for any real number a and b with a lt b, then value of int_(a)^(b) f (x) dx equals

Answer»

`(1)/(3) (|B|^(3) - |a|^(3) )`
`(1)/(3) |b^(3) -a^(3) |`
`(1)/(3) (a^(3) + b^(3) )`
`(1)/(3) (a^(3) -b^(3) )`

ANSWER :B
5261.

If |z_(1)+z_(2)|=|z_1|+|z_2| then

Answer»

`z_(1)" and "z_(2)` are real
`z_(1)" and "z_(2)` are real and positive
`(z_(1))/(z_(2))` ISREAL
`(z_(1))/(z_(2))` is real and positive

Answer :D
5262.

If a, b, c are positive real numbers, then for the system of equations x^(2)/a^(2)+y^(2)/b^(2)-z^(2)/c^(2)=1,x^(2)/a^(2)-y^(2)/b^(2)+z^(2)/(c^(2))=1,-x^(2)/a^(2)+y^(2)/b^(2)+z^(2)/c^(2)=1 there is :

Answer»

no solution
exactly ONE solution
infinite SOLUTIONS
NONE of these

Answer :B
5263.

The values of gammaandmu for which the vectors a=2hat(i)+lamdahat(j)-hat(k) is perpendicular to the vector vec(b)=3hat(i)+hat(j)+muhat(k) with |vec(a)|=|vec(b)| are

Answer»

`LAMDA=(41)/(12),mu=(31)/(12)`
`lamda=(41)/(12),mu=-(31)/(12)`
`lamda=-(41)/(12),mu=(31)/(12)`
None of these

Answer :C
5264.

Threedifferentfunctionsaredefinedin thetablebelow . Thediagrambelowusesfunctions. Theonlyvaluesforp,q,r,s andt are 1and 0 . Whichof thefollowinginputs (p,q,r,s,t)willproducetheoutput0 ?

Answer»

`(0,1,1,0,1)`
`(0,1,1,1,1)`
`(0,0,1,0,1)`
`(1,0,1,0,0)`

ANSWER :B
5265.

Fill int the blanks choosing correct answer from the bracket. If a = 12, b = 7 , C = 30^@, then Delta = _____.

Answer»

42
84
21

Answer :C
5266.

Find the area of the region enclosed by the given curves . y=x^(3)+3, y=0 , x=-1, x=2

Answer»


ANSWER :`(51)/(4)`
5267.

If e is the eccentricity of the hyperbol and r is the radius of the circle x^(2) + y^(2) - 6x - 18y + 87 = 0, then the value of er is equal to

Answer»

`2sqrt(3)`
`2//sqrt(3)`
2
3

Answer :C
5268.

If sinA+sinB=a and cosA+cosB=b, show that cos(A+B) = (b^2-a^2)/(b^2+a^2)

Answer»

SOLUTION :COS(A+B)
=(1-tan^2((A+B)/2)/(1+tan^2((A+B)/2)
= (1-a^2/b^2)/(1+a^2/b^2) = (b^2-a^2)/(b^2+a^2)`
5269.

Find the points on the curve y= cos x-1 in x in [0, 2pi], where the tangent is parallel to X-axis.

Answer»


ANSWER :`(PI, -2)`
5270.

Leta =2 hati+ hatj- 3 hatkand b - hati+ 3 hatj+ 2 hatk .then thevolumeof theparallelopipedhavingcoterminous edgesas a,b, and cwherec isthevectorperpendicularto theplaneof a,band|c|=2 is

Answer»

`2sqrt(195)`
`24`
`SQRT(200)`
`sqrt(195)`

ANSWER :A
5271.

If 2^2006 - 2006 divided by 7, the remainder is

Answer»

0
1
2
4

Answer :A
5272.

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))|!= 0|(a_(1)+b_(1)x, a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3))|=0 then x=

Answer»

0
1
-1
`+-1`

ANSWER :D
5273.

If z=-1, then principal value of arg(z^(2//3)) is

Answer»

`0,(2PI)/3,-(2pi)/3`
`PI/3,2pi`
`(5PI)/3`
`-pi,pi`

Answer :A
5274.

The shortest distance between (0 , 0, 0) and (2sint, 2cost,3t) is :

Answer»

4
3
2
1

Answer :C
5275.

If f(x) =|{:(sin^(2)x+,cos^(4)xIncos x,(1)/(1+(tanx)^(sqrt(2)))),(pi,pi^(2),pi^(4)),((7)/(16),-(1)/(2)In2,(1)/(4)):}| the value off_(0)^(pi//2)f(x) dx is

Answer»

2
-1
0
None of these

Answer :C
5276.

If A,B,C are projections of P(3,4,5) on the coordinate planes, find PA , PB and PC.

Answer»

SOLUTION :PA=5 ,PB =3, PC=4.
5277.

A coin is tossed three times{:(" E "": ""head on third toss"," F "": ""head on first two tosses"):}.Find P(E//F)

Answer»


Answer :(i) `(1)/(2)`, (ii) `(3)/(7)`, (III) `(6)/(7)`
5278.

Let ABCD be a square with sides of unit lenght. Points E and F are taken on sides AB and AD, respectively,so that AE=AF. Let P be a point inside the squre ABCD. The value of (PA)^2-(PB)^2+(PC)^2-(PD)^2 is equal to

Answer»

3
2
1
0

Solution :
`(PA)^2-(PB)^2+(PC)^2-(PD)^2`
`=(alpha^2+gamma ^2)-(alpha^2+delta^2)+(delta^2+beta^2)-(gamma^2+beta^2)=0`
5279.

Let ABCD be a square with sides of unit lenght. Points E and F are taken on sides AB and AD, respectively,so that AE=AF. Let P be a point inside the squre ABCD. Let a line passing through point A divides the sqaure ABD into two parts so that the area of one portion is double the other. then the length of the protion of line inside the square is

Answer»

`SQRT(10)//3`
`sqrt(13)//3`
`sqrt(11)//3`
`2//sqrt3`

Solution :`(1)/(2)y(1)=(1)/(3)(1)`
or `y=(2)/(3)`
`THEREFORE AQ=sqrt((1)^2+(2/(3))^2) =(sqrt13)/(3)`
5280.

The plane ax + by + cz = 1 intersects the axes in A, B and C respetively. The centroid of Delta ABC is G (1/6, -1/3 , 1). Then a + b + 3c = .......

Answer»

`2`
`4`
`4/3`
`5/6`

ANSWER :A
5281.

If * is a binary operation in N defined as a*b=a^(3)+b^(3) , then which of the following is true : (i) * is associative as well as commutative. (ii) * is commutative but not associative (iii) * is associative but not commutative (iv) * is neither associative not commutative.

Answer»


ANSWER :(II)
5282.

If y=mx+1 is tangent to the parabola y^(2)=4x then m=

Answer»

`-1`
1
2
`-2`

ANSWER :B
5283.

Let vec(a),vec(b) and vec(c ) be three coterminous edges ofa tetrahedron with volume (1)/(3)then volume of a parallelopiped whose non-parallel sides are given by vec(a)xxvec(b),vec(b)xxvec(c)"and" vec(c ) xx vec(a) is

Answer»

`(1)/(2)`
1
2
4

Solution :
AREA `(1)/(2)xx2pixx2pi=2pi^(2)`
5284.

Two players A and B each toss 10 coins. The probability that they show equal number is heads is

Answer»

`(.^(20)C_(10))/(2^(20))`
`(1)/(2^(10))`
`(1)/(2^(20))`
`(1)/(2^(9))`

Answer :A
5285.

If alpha=(pi)/21 then (sin 3 alpha+sin 7 alpha)/(sin 24 alpha+sin 14 alpha)=

Answer»

`0`
1
`-1`
2

Answer :C
5286.

Construct a_(2xx2) matrix where (i)a_(ij)=((i-2j)^(2))/(2) (ii)a_(ij)=|-2i+3j|

Answer»


Answer :(i) `=[{:((1)/(2),(9)/(2)),(0,2):}]_(2XX2`
(II) `=[{:(1,4),(1,2):}]_(2xx2`
5287.

Evaluate :|{:(1, cosec ^(2) theta, cot ^(2) theta),(-1 , cot ^(2) theta, cosec ^(2) theta),(2,(9)/(2), (5)/(2) ):}|a) -1 b) 1 c) 0 d) None of these

Answer»

`-1`
1
0
None of these

ANSWER :C
5288.

[ 2+6-2+78-10] =

Answer»


ANSWER :A
5289.

Examine the existence of the following limits:lim_(xto0-)e^(1/x)

Answer»

SOLUTION :`lim_(xto0-)e^(1/x)=0` because as
`xto0-,1/xto-infty`
So `e^(1/x)to0`
`therefore` The limit EXISTS.
5290.

Examine the existence of the following limits:lim_(xto0+)e^(1/x)

Answer»

SOLUTION :`lim_(xto0+)E^(1/x)=lim_(xto0)e^(1/x)=e^infty=infty`
The LIMIT not EXISTS.
5291.

int (x^(4) + 2x-1) sin 3x dx.

Answer»


ANSWER :`(9X^(2) + 18X -11)/( 27) cos 3x + (2x+2)/( 9) sin 3x+C`.
5292.

Ify=tan^-1((3x-x^2)/(1-3x^2)), (-1)/sqrt3ltxlt1/sqrt3Find (dy)/(dx)

Answer»

SOLUTION :`y=tan^-1((3x-x^3)/(1+3x^2))=3tan^-1xtherefore(DY)/(DX)=3xx1/(1+x^2)=3/(1+x^2)tan^-1((3x-x^2)/(1+3x^2))=3tan^-1x`
5293.

If [x] represents the greatest integer function and f(x)=x-[x]-cos x" then "f^(1)(pi/2)=

Answer»

1)2
2)0
3)does not exist
4)1

Answer :A
5294.

Approximately how many more miscellaneous public transit vehicles than public transit trolley buses were there in 2000?

Answer»

1000
1500
2000
3000

Answer :D
5295.

Cartesian form of the eqution of line barr=3hati-5hatj+7hatk+lambda(2hati+hatj-3hatk) is

Answer»

`(x-2)/(3)=(y-1)/(-5)=(z+3)/(7)`
`(x-3)/(2)=(y+5)/(1)=(z-7)/(-3)`
`(x-2)/(3)=(y-1)/(-5)=(z-3)/(7)`
`(x-2)/(7)=(y-1)/(-5)=(z+3)/(3)`

Answer :B
5296.

The straight line x-2y+5=0 intersects the circle x^(2)+y^(2)=25 in points P and Q, the coordinates of the point of the intersection of tangents drawn at P and Q to the circle is

Answer»

(25, 50)
(-5,10)
(25,-50)
(-5,-10)

ANSWER :B
5297.

The sum of all the numbers that can be formed by takingall digits 2,3,4,4,5 onlyis

Answer»

2399976
21844
630624
181440

Answer :A
5298.

Evaluate int_(0)^(prop) (x^3)/(3^x)dx.

Answer»


ANSWER :`(3!)/((LOG3)^4)`.
5299.

The length of the common chord of the circles x^2+y^2+ax+by+c=0 and x^2+y^2+bx+ay+c=0 is

Answer»


ANSWER :`x+2y-2=0, 2sqrt(14/5)`
5300.

{:(" " Lt),(n rarroo):}(1)/(n^(2)) sum_(r=1)^(n) r.e^(r//n)=

Answer»

e
1
2e
2

Answer :B