Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

5801.

Let f:R^(+)to R be a differentiable function satisfyingf(x) f(x)=e+(1-x)ln((x)/(e ))+int_(1)^(x)f(t)dt AA x in R^(+). If the area enclosed by the curve g(x)=x[f(x)-e^(x)] lying in the fourth quadrant is A, then find the value ofA^(-2).

Answer»


ANSWER :16
5802.

Let f(x)={{:(x+2","-1lexlt0),(1","x=0),((x)/(2)","0lt x le1):}. Then on [-1,1], this function has :

Answer»

a minimum
a MAXIMUM
either a maximum or a minimum
neithera maximum nor a minimum.

Answer :D
5803.

An eight digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. Thenumber of ways in which this can be done is

Answer»

`72 (7!)`
`18(7!)`
`40(7!)`
`36(7!)`

ANSWER :D
5804.

The minimum value of |z-1|z-5| is

Answer»

5
4
3
2

Answer :B
5805.

int_(0)^(100)sin(x-[x])pidx=

Answer»

`(100)/(PI)`
`(200)/(pi)`
`100 pi`
`200 pi`

ANSWER :B
5806.

Where n is some integer then answer the following question The value of n is

Answer»

0
1
2
`-2`

ANSWER :C
5807.

Show that int [ (1 + nx^(n-1) - x^(2n))/((1 - x^(n)) sqrt(1 - x^(2n)) ) ]e^(x) dx = e^(x) sqrt((1 + x^(n))/(1 -x^(n))) + c

Answer»


ANSWER :`E^(X) sqrt((1 + x^(n))/(1 -x^(n))) + c `
5808.

If p(x) = ax^2 + bx + c and Q(x) = -ax^2 + dx +c where ac ne 0 then p(x). Q(x) = 0 has at least …………. Real roots

Answer»

no
`1`
`2`
infinite

Answer :C
5809.

int_(2)^(5) sqrt((x-2)/(5-x))dx=

Answer»

`(3PI)/(4)`
`(2pi)/(5)`
`(3pi)/(2)`
`(5PI)/(2)`

ANSWER :C
5810.

Find the number of 4 xx 4 array where entries are from the set {0,1,2,3} and which are such that the sum of the numbers in each of the four rows and in each of the four columns is divisible by 4.

Answer»


ANSWER :`4^(9)`
5811.

Let ** be a binary defined on R by a**b=(a+b)/(4)AAa,binR then the operation ** is

Answer»

a.COMMUTATIVE and ASSOCIATIVE
B.Commutative but not Associative
c.Associative but not commutative
d.Neither Associative nor Commutative

ANSWER :B
5812.

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes and angle alpha (0 lt alpha lt (pi)/(4)) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is

Answer»

`y(COS alpha+SIN alpha)+X(sin alpha-cos alpha)=a`
`y(cos alpha+sin alpha)+x(sin alpha+cos alpha)=a`
`y(cos alpha+sin alpha)+x(cos alpha-sin alpha)=a`
`y(cos alpha-sin alpha)-x(sin alpha-cos alpha)=a`

ANSWER :C
5813.

If a,b,c and A,B,C inR-{0} such that aA+bB+cD+ sqrt((a^(2)+b^(2)+c^(2))(A^(2)+B^(2)+C^(2)))=0, then value of (aB)/(bA) +(bC)/(cB) + (cA)/(aC) is

Answer»

3
4
5
6

Solution :LET `theta` be the required ANGLE. Then `theta` will be the angle between `VECA` and `vecb + vecc(vecb+vecc)` lies along the ANGULAR bisector of `veca` and `vecb`.
`therefore costheta=(veca.(vecb+vecc))/(|veca||vecb+vecc|)`
`=(2cosalpha)/sqrt(2+2cosalpha) = (cosalpha)/(cosalpha/2)`
`therefore theta=cos^(-1)(cosalpha)/(cosalpha/2)`
`therefore vecr_(1)vecr_(2)-|vecr_(1)||vecr_(2)|`
`rArr vecr_(1)` and `vecr_(2)` are anti-parallel
`rArr a/A=b/B=c/C=k` where k is any constant
`rArr (aB)/(bA) +(bC)/(cB) + (cA)/(aC)=3`
5814.

Draw the graph of y=e^(x)+e^(-2x)

Answer»

Solution :We have `y=f(x)=e^(x)+e^(-2x)`
Clearly, the doamin of the function is R.
`f(0) =1+1=2`
ALSO `f(x) gt 0, AA x in R`
`f^(')(x) = e^(x)-2e^(-x)= e^(-2x)e^(3x-2)`
`f^(')(x)=0 therefore e^(3x)=2` or `x=1/3log2`
`f(1/3log2) e^(1/3log2) + e^(-2/3)log2=2^(1//3) + 2^(-2//3) = 3/2^(2/3)`
`f(x)` DECREASES in `(-INFTY, 1/3 log2)` and increases in `(1/3log2, infty)`
Hence the graph of the function is as shown in the following figure.
5815.

Find the mean deviation about the median for the data

Answer»


ANSWER :`=3.23`
5816.

If the circles x^2+y^2+2x+2ky+6=0 and x^2+y^2+2ky+k=0 intersect orthogonally,show that k=2 or -3/2

Answer»

4
3
2
1

Answer :D
5817.

If r a=r. b=r. c=1 where a, b, c are any three non-coplanar vectors, then r is

Answer»

coplanar with a, b, c
PARALLEL to `a+b+c`
parallel to `b XX c+c xx a+axxb`
parallel to `(a xx b) xx c`

SOLUTION :Now,l `r*a=r*b`
`implies r((a-b)=0`
Similarly, `r*(b-c)=0`
Since, r is parallel to `(a-b)xx(b-c).`
So, r is parallel to `axx b +c xx a +b xx c`
5818.

Moist skin help in respiration in :-

Answer»

Annelids
Amphibians
Both (1) and (2)
Mammals

Answer :A
5819.

Evaluate: int log x dx

Answer»


ANSWER :`XLOG x-x+c`
5820.

Given that one root of 2x^3+3x^2-8x+3=0is double of another root , find the roots of the equation.

Answer»


ANSWER :`1/2,1-3`
5821.

The sum of the infinite series cot^(-1)2 + cot^(-1)8 + cot^(-1)18 + cot^(-1) 32 +..... is equal to

Answer»

`pi//3`
`pi//4`
`pi//6`
`pi//8`

ANSWER :B
5822.

Evaluate the following determinants. [[1,1,1],[2,2,2],[3,3,3]]

Answer»

SOLUTION :`[[1,1,1],[2,2,2],[3,3,3]]=0(because C_1=C_2)`
5823.

Out of the first 25 natural numbers two are chosen at random. The probability for one of the numbers to be a multiple of 3 and the other to be a multiple of 5 is

Answer»

`1//15`
`13//100`
`1//5`
`4//15`

ANSWER :B
5824.

Write the value of intx^20sec^2x dx-intx^20tan^2x dx.

Answer»

SOLUTION :`intx^20sec^2dx-intx^20tan^2dx=intx^20(sec^2x-tan^2x0dx=intx^20dx=int(x^21)/21+c`
5825.

If 2cosx+2cos3x=cosy and 2sinx+2sin3x=siny then cos 2x=

Answer»

`-7//8`
`-1//8`
`1//8`
`7//8`

ANSWER :A
5826.

The radius of a circle is increasing uniformly at the ratio 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.

Answer»


ANSWER :`60 PI CM^(2)//s`
5827.

int (dx)/(sqrt(x-x^(2)))=

Answer»


ANSWER :`2sin^(-1)sqrt(X)+c`
5828.

The solution of (dy)/(dx) = 1 -x(y-x) - x^(3) (y-x)^(3) is

Answer»

`(y -x)^(2) (x^(2) + 1 + CX^(2)) =1`
`(y -x)^(2) (x^(2) + 1 + CE^(x^(2))) =1`
`(y-x)^(2) (x^(2) -1 + cx^(2)) =1`
`(y-x)^(2) (-x^(2) -1 + ce^(x^(2))) =1`

Answer :D
5829.

For any two vectors bara,barb prove that |bara xx barb|^2 = |bara|^2|barb|^2 - (bara.barb)^2.

Answer»


ANSWER :`|BARA XX barb|^2= |bara|^2|barb|^2 - (bara.barb)^2`.
5830.

Find the number of zeros at the end of lfloor100

Answer»


ANSWER :24
5831.

Find the area of the region enclosed by the given curves . x=4-y^(2), x=0

Answer»


ANSWER :`(32)/(3)`
5832.

If A and B are two finite sets such that the total number of subsets of A is 960 more the total number of subsets of B, then n(A) -n(B) is equal to .

Answer»

2
3
4
6

Answer :C
5833.

If the functionf(x) = 1/(x+2),then find the points of discountinuity of the composite functiony = f{f(x)}.

Answer»


Solution :We have `f(x) = (1)/(x+2)`
`:. y =f{f(x)}`
` = f((1)/(x+2)) = (1)/((1)/(x+2)+2)`
`= (1)/(1+2x+4).(x+2)= ((x+2))/((2x+5))`
So,the functiony will not continousat those points, whereit is not denfined as it is a RATIONALFUNCTION.
THEREFORE, `y = (x+2)/((2x+5))` is not defined, when `2x + 5 = 0`
`:.x = (-5)/(2)`
Hence,y isdiscountinuousat `x= (-5)/(2)`
5834.

Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta = 4 sin ^(-1) ((7sqrt2)/10) - 4 tan^(-1) (3/4), then which of the following does not hold (s) good ?

Answer»

`ALPHA LT PI " but " beta gt pi`
`alpha gt pi " but " beta lt pi`
Both `alpha " and " beta`are EQUAL
`COS ( alpha + beta) = 0`

Answer :A::B::D
5835.

Integration using rigonometric identities : int ((sin theta+cos theta))/(sqrt(sin2 theta))d theta=.....

Answer»

`log|cos theta- SIN theta+ sqrt(SIN2 theta)|`
`log|sin theta- cos theta+ sqrt(sin theta)|`
`sin^(-1)(sin theta-cos theta)+c`
`sin^(-1)(sin theta+cos theta)+c`

ANSWER :C
5836.

Find the equation of parabola whose axis is parallel tox-axis and which passes through the points (-2, I) (1,2) (-1. 3)

Answer»


ANSWER :`5Y^(2)+2x-21y+20=0`
5837.

If int (sqrt3)/(sqrtx- root 3x) dx =x + Ex ^(5//6) + Dx ^(1//2) + Bx ^(1//3) + Ax^(1//6)+ log (root6x-1)^(6) +K, then A +B+C+D+E=

Answer»

`137/10`
`129/10`
`119/10`
`117/10`

ANSWER :A
5838.

Find the area of the largest rectangle in the first quadrant with two sides on x-axis and y-axis and one vertex on the curve y= 12-x^2

Answer»


ANSWER :`16cm^2`
5839.

Find the scalar and vector projection of veca on vecb. veca = hati+hatj,vecb = hatj+hatk

Answer»

SOLUTION :Scalar PROJECTION of `veca` on `vecb`
= `(veca.vecb)/|vecb| = ((hati+hatj).(hatj+hatk))/_hatj+hatk| = 1/sqrt2`
Vector projection of `veca` on `vecb`
= `((veca.vecb)/|vecb|) vecb/|vecb| = 1/sqrt2 (hatj+hatk)/sqrt2 = hatj+hatk/2`
5840.

The sum of the series1/1.3+2/1.3.5+3/1.3.5.7+…is equal to :

Answer»

Twice MAXIMUM value of`F(x)=x-x^2`
1/p where p is EVEN prime
L.C.M. of 1/4 and 1/2
Halfof periodof f(x) =x -[x],where [x] is G.I.F

Answer :A::B::C::D
5841.

int_(0)^(pi//2) (5 tan x - 3 cotx)/(tan x + cot x) dx=

Answer»

`PI/2`
`2 pi`
`pi`
`pi/4`

ANSWER :A
5842.

If xgt0 and the range of 1, 2, x, 5, and x equals 7, what is the approximate average (mean) of the list ?

Answer»


ANSWER :3.76
5843.

Evaluate the following determinants. [[0,x],[2,0]]

Answer»

SOLUTION :`[[0,X],[2,0]]`=0-2x=-2x
5844.

{:(,"List-I",,"List-II",),((P),"Let volume ofa tetrahedron ABCD is",(1),3,),(,(81)/(2) "cube unit and volume of parallelopiped",,,),(,"whose three coterminous edges are line",,,),(,"segment joining centroid of any face of ",,,),(,"tetrahedron with centroids of its other three",,,),(,"faces is V cubic unit. then V is",,,),((Q),"If images ofthe point (1,0,1) in the plane" ,(2),8,),(,x-y-z=1 "is (a,b,c) then 3(a-b+c)",,,),(,"is equal to",,,),((R),"Locus of all the points which are at a distance of",(3),3,),(,3 "units from the line" underset(r )(rarr)=lambda(i+j+k)" is given by",,,),(,x^(2)+y^(2)+z^(2)-xy-yz=(k)/(2) "then find"(k)/(9),,,),((S),underset(a)(rarr) "and" underset(b)(rarr)and underset(a)(rarr)underset(b)(rarr)underset(c)(rarr)"are such that" |underset(a)(rarr)|=sqrt(3)|underset(b)(rarr)|=2,(4),7,),(,"and" |underset(c)(rarr)=sqrt(6). "If"underset(a)(rarr)underset(b)(rarr)lt0underset(c)(rarr) "is perpendicular to both" ,,,),(,underset(a)(rarr) "and" underset(b)(rarr) "and" underset(a)(rarr)underset(b)(rarr)underset(c)(rarr) "form the coterminous edges of a",,,),(,"tetrahedron of unit volume then angle between" underset(a)(rarr) "and" underset(b)(rarr) ,,,),(,"is" (pi)/(q) "(where p,q are coprime number) where (p+q) is",,,):}

Answer»

<P>`{:(P,Q,R,S),(1,2,3,4):}`
`{:(P,Q,R,S),(4,3,2,1):}`
`{:(P,Q,R,S),(1,4,3,2):}`
`{:(P,Q,R,S),(1,2,4,3):}`

Solution :`(P) Let Dvec((O)),AVEC((a)),B vec((b)),CVEC((c))`
given volume of tetrahedron is |(1)/(6)[underset(a)(-)underset(b)(-)underset(c)(-)]|=(81)/(2)`
|(underset(a)(-),underset(b)(-)underset(c)(-))|=3^(5)`
Centroids by faces are
` G_(1)((vec(a)+vec(b) +vec(c))/(3))`
` G_(2)((vec(a)+vec(b))/(3))`
G_(3)((vec(b)+vec(c))/(3))`
`G_(4)((vec(c)+vec(a))/(3))`
Volume of parallelopiped |vec(G_(1)G_(2))vec(G_(1)G_(3))vec(G_(1)G_(4))]|`
=|[-vec(c)/(3)-vec(a)/(3)-vec(b)/(3)]|[[vec(a)vec(b)vec(c)]]/(3^(3))|=9`
(Q) Let the image of the point (1,0,1) in
the plane x-y-z=1 is A (a,b,c)`
D.R. of AA are `(a-1,b,c-1)`
D.R. of normal are `(1,-1,-1)`
`(a-1)/(1)=(b)/(-1)=(c-1)/(-1)=lambda`
`impliesa=lambda+1, b=-lambda, c=1-lambda`
mid point of AA' lie on plane
`x-y-z =1 implies lambda=(2)/(3)`
`a=(5)/(3), b=(-2)/(3),c=(1)/(3) implies 3(a+b+c)=3((8)/(3))=8`
(R) `vec(QP).(i+j+k)=0`
implies (x-lambda)+(y-lambda)+(z-lambda)=0`
lambda=(x+y+z)/(3)`

`(PQ)^(2)=9implies (x-lambda)^(2)+(y-lambda)^(2)+(z-lambda)^(2)=9`
x^(2)+y^(2)+z^(2)+3lambda^(2)-2lambda(x+y+z)=9`
`x^(2)+y^(2)+z^(2)+3lambda^(2)-2lambda.3lambda=9`
implies x^(2)+y^(2)+z^(2)-3((x+y+z)/(3))^(2)=9`
implies x^(2) +y^(2)+z^(2)-xy-yz-zx=(27)/(2)`
`k=27, (k)/(9)=3`
(S) underset(C)(rarr)=lambda(underset(a)(-)xxunderset(b)(-)) also`
|(1)/(6)[underset(a)(-)underset(b)(-)underset(c)(-)]|=1implies |[underset(a)(-)underset(b)(-)underset(c)(-)]|=6`
implies |vec((a)(-)xxvec(b)(-))vec(c)(-)|=6implies|c|^(2)/|lambda|=6`
implies 6=6|lambda|implies|lambda|=1`
`implies|vec((a)(-)xxvec(b)(-)).vec(c)(-)|=6implies(|c|^(2))/(|lambda|)=6`
`implies 6 = 6|lambda|implies |lambda|=1`
`therefore |c|^(2)=lambda^(2)|a|^(2)|b|^(2) sin^(2)THETA`
`implies 6=12sin^(2)theta=theta=(3pi)/(4)(a.blt0)`
`p+q=7`
5845.

The reflection point of the point(0, 3,-2)" on the line "(1-x)/( 2)= 2 -y=z + 1is

Answer»

` ( 1,2,-1)`
` ( 2,1,4)`
` ( 2,1,0)`
` (0,0,1)`

ANSWER :C
5846.

A point P moves such that sum of the slopes of the normals drawnfrom it to the hyperbola xy=16 is equal to the sum of the ordinatesof the feet of the normals. Let 'P' lies on the curve C, then : Q.Area of the equilateral triangle, inscribed in the curve C, and having one vertex same as the vertex of C is :

Answer»

`768 sqrt(3)`
`776 sqrt(3)`
`760sqrt(3)`
NONE of these

Answer :A
5847.

A point P moves such that sum of the slopes of the normals drawnfrom it to the hyperbola xy=16 is equal to the sum of the ordinatesof the feet of the normals. Let 'P' lies on the curve C, then : Q. The equation of 'C' is :

Answer»

`X^(2)=4y`
`x^(2)=16y`
`x^(2)=12y`
`y^(2)=8X`

Answer :B
5848.

A point P moves such that sum of the slopes of the normals drawnfrom it to the hyperbola xy=16 is equal to the sum of the ordinatesof the feet of the normals. Let 'P' lies on the curve C, then : Q. If tangents are drawn to the curve C, then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is :

Answer»

`X^(2)=4y`
`x^(2)=2Y`
`x^(2)+2y=0`
`x^(2)+4y=0`

ANSWER :C
5849.

If n is an integer with 0le n le 11, then the minimum value of n!(11 - n)! is attained when a value of n equals to

Answer»

11

7
9

Answer :B
5850.

If the graph of the antiderivative F(x) of f(x) = log(log x) + (log x) - 2 passes through (e,7-e) then the term independent of x in F(x) is

Answer»


ANSWER :7