Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6151.

State whether the following is a probability distribution of a random variable. Give reason for your answer.

Answer»

Solution :Since P(3) lt 0, the GIVEN table can't be the PROBABILITY distribution of a RANDOM variable.
6152.

State whether the following is a probability distribution of a random variable. Give reason for your answer.

Answer»

Solution :Since `0 LT P(x) lt1` for all VALUE of x and `sumP(x)=0.4+0.4+0.2=1`, the given table is the PROBABILITY DISTRIBUTION of a random variable.
6153.

State whether the following is a probability distribution of a random variable or not. Give reason for your answer.

Answer»

Solution :Since `sumP(Z) ne 1`, the given table is not the probability DISTRIBUTION of a RANDOM VARIABLE.
6154.

State whether the following is aprobability distribution of a random variable. Give reason for your answer.

Answer»

SOLUTION :Since `sumP(Z)=0.6+0.1+0.2 ne1`, the given table is not the probability distribution of a random variable.
6155.

Evaluate :int _(-1) ^(1)(dx)/( e^(x) + 1) dx

Answer»


ANSWER :`1`
6156.

int (x)/((1 - x)^(n))dx =

Answer»

`((1 - X)^(2- n))/(2 - n) + ((1 - x)^(1 -n))/(1 - n)` + C
`((1 - x)^(2 + n))/(2 + n) -((1 - x)^(1+ n))/(2 + n) + c `
`((1 - x)^(2 - n))/(2 - n) -((1 - x)^(1+ n))/(1 - n) + c `
`((1- x)^(2- n))/(2 + n) + ((1 - x)^(1- n))/(1 + n) + c `

ANSWER :C
6157.

If bar(x)xx(bar(y)xx bar(z))=(bar(x)xx bar(y))xx bar(z) then bar(y)xx(bar(z)xx bar(x)) = ………… .

Answer»

`bar(Z)xx (bar(X)xx bar(y))`
`bar(x)xx(bar(y)xx bar(z))`
`bar(0)`
`bar(x)xx(bar(z)xx bar(y))`

ANSWER :C
6158.

Let alpha, betabe the roots ofax^(2)+bx+c=0 and gamma, delta be the roots ofpx^(2)+qx+r =0and D_(1), D_(2)be the discriminants respectively. Ifalpha, beta, gamma, deltaare in A.P., thenD_(1):D_(2)is

Answer»

`(a^(2))/(B^(2))`
`(a^(2))/(p^(2))`
`(b^(2))/(q^(2))`
`(C^(2))/(R^(2))`

Answer :b
6159.

Resolve (x^(4)+13x^(2)+15)/((2x^(2)+3)(x^(2)+3)^(2)) into partial fractions

Answer»


Answer :`(1)/(X^(2)+3)+(5)/((x^(2)+3)^(2))-(1)/(2X^(2)+3)`
6160.

If alphabe the set of integral values of c for which the equations cos 2xx + c sin x =2c - 7 has solutions then find the number of distinct symmetricmatrix of order3xx3 whose treace is 18 and entries are from the set alpha

Answer»

100
125
150
180

Answer :B
6161.

If (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) are the vertices of a triangle whose area is 'k' square units, then |(x_(1),y_(1),4),(x_(2),y_(2),4),(x_(3),y_(3),4)|^(2) is

Answer»

1)`32 k^(2)`
2)`16 k^(2)`
3)`64 k^(2)`
4)`48 k^(2)`

Answer :C
6162.

Let PSP ^(1)is a focal chord of the ellipse 4x^(2) +9y^(2) =36and SP =4, then S^(1) P^(1)=

Answer»

`( 26) /(5) `
` (36)/( 5)`
` 4`
` 5`

ANSWER :A
6163.

A box contains 4 red and 7 blue balls. Two balls are drawn at randon with replacement. Find the probability of getting (i) 2 red balls (ii) 2 balls are of blue colour (iii) one red and one blue ball is selected.

Answer»


ANSWER :`(i) (16)/(121) (ii)(49)/(121)(iii)(56)/(121)`
6164.

int_(0)^(a)(a^(2)-x^(2))^(5//2)dx=

Answer»

`(PI a^(2))/(2)`
`(pi a^(2))/(4)`
`(2pi a^(2))/(3)`
`(pi a)/(4)`

Answer :B
6165.

If alpha and beta are the eccentric angles of the ends of a focal chord of the ellipse then cos^(2)((alpha+beta)/(2))sec^(2)((alpha-beta)/(2))=

Answer»

`(a^(2)+B^(2))/(a^(2))`
`(a^(2)-b^(2))/(a^(2))`
`(a^(2))/(a^(2)+b^(2))`
`(a^(2))/(a^(2)-b^(2))`

ANSWER :D
6166.

Integrate the following function : int(dx)/(sqrt(x^(2)-6x+10))

Answer»


ANSWER :`log|(X-3)+sqrt(x^(2)-6x+10)|+C`
6167.

Assertion: The polynomial 5x^9+3x^5-x^4-2x^2+5 has atleast six imaginary roots. Reason: Descretes rule of sign.

Answer»

(R) is ONE of the reason of prove (A)
Find maximum no. of positive roots , thenfind maximum no. of negative roots. Using (R) and hence (A) can be proved .
(A) is WRONG
(R) cannot give CURRENT DISCUSSION to SOLVE (A)

Answer :B
6168.

Find the probability distribution of i. number of head in two tosses of a coin. ii. number of tails in the simultaneous tosses of three coins. iii.number of heads in four tosses of a coin.

Answer»


ANSWER :`(##NCERT_TAM_MAT_XII_P2_C13_E04_004_A01##)`
`(##NCERT_TAM_MAT_XII_P2_C13_E04_004_A02##)`
6169.

If 2^(f(x)) = (2+x)/(2-x), x in (-2, 2) and f(x) = lambda f((8x)/(4+ x^(2))) then value 'lambda' will be

Answer»

2
`(1)/(2)`
1
`-1`

ANSWER :B
6170.

0.2 + 0.22 + 0.222 + …….. to n terms =

Answer»

`(2/9) - (2/81)(1 - 10^(-N))`
`n - (1/9)(1 - 10^(-n))`
`(2/9)[n - (1/9)(1 - 10^(-n))]`
`2/9`

ANSWER :C
6171.

IFalpha, betaare therootsofax ^2+ bx+ c=0, alpha_1 , - betathe rootsofa_1 x^2+ b _1 x + c_(1) =0thenalpha, alphaaretherootsof theequation

Answer»

`(b/a+b_1/a_1)^-1x^2+x(b_1/c_1+b/c)^-1=0`
`(b/a-b_1/a_1)^-1x^2-x(b_1/c_1+b/c)^-1=0`
`(b/a+b_1/a_1)^-1x^2-x(b_1/c_1+b/c)^-1=0`
none

Answer :A
6172.

If the value of prod_(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r),(0,1):}] then r is equal to

Answer»

`62500`
`2500`
`1250`
`12500`

Solution :`(B)` `[{:(1,1),(0,1):}][{:(1,3),(0,1):}]=[{:(1,4),(0,1):}]`
`[{:(1,4),(0,1):}][{:(1,5),(0,1):}]=[{:(1,9),(0,1):}]`
`[{:(1,9),(0,1):}][{:(1,7),(0,1):}]=[{:(1,16),(0,1):}]`
If `n` is no. of matrices that are MULTIPLIED, then PRODUCT is `[{:(1,n^(2)),(0,1):}]`
`:.r=2500`
6173.

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),("k","if",x = 2):} is continuous at x = 2.

Answer»


ANSWER :`K = (1)/(2)`
6174.

The value of int_0^100 [ tan^(-1) x] dx is ([.] G.I. F.)

Answer»

100
`100-tan^(-1)1`
`100-TAN1`
`100+pi/4`

Solution :We have,
`int_0^100[tan^(-1)X]DX =int_(0)^(tan1)[tan^(-1)x]dx + int_(tan1)^100 [tan^(-1)x]dx`
`RARR int_0^100[tan^(-1)x]dx=int_0^(tan1)0 dx + int_(tan1)^(100)1.dx=100-tan1`
6175.

Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%.

Answer»


ANSWER :`6%`
6176.

Find points at which the tangent to the curve y=x^(3)-3x^(2)-9x+7 is parallel to the x-axis.

Answer»


ANSWER :(3, -20) and (-1, 12)
6177.

Evaluate the following integrals intxsin^(-1)dx

Answer»


Answer :`(1)/(4)[(2X^(2)-1)SIN^(-1)x+xsqrt(1-x^(2))]+c`
6178.

Equation of circle touching the lines.| x- 2 | + | y-3| =4is

Answer»

` (x-2 ) ^(2) + (y-3) ^(2) =1 2`
` (x-2) ^(2) + (y-3) ^(2) =4`
` (x-2) ^(2) + (y-3) ^(2) = 8`
` ( x-2) ^(2) +(y-3) ^(2) = 16`

ANSWER :C
6179.

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4],then

Answer»

`a=1, b GT 5`
`a=2, b gt 7`
`a=2, b gt 10`
`a=0, b in R`

Solution :`X in [-1,2]`
`or-1 le x le 2`
`or -2 le 2x le 4`
`or -2+a le 2x+a le 4+a`
`or -2+a le -2 and 4+a le 4, i.e., a=0`
b can TAKE any VALUE.
6180.

The sum of an infinity decreasing G.P is equal to 4 and the sum of the cubes of its terms is equal to 64/. Then 5^(th) term of the progression is :

Answer»

`1/4`
`1/8`
`1/16`
`1/32`

SOLUTION :Let the G.P. be, a, ar , `ar^2`
`implies(a)/(1-r) =4 ""….(1)`
ALSO, `a^3 + (ar)^3 + ………. = (a^3)/(1-r^3) implies(a^3)/(1-r^3)=(64)/(7)`
`implies7a^3 = 64 (1-r^3) ""….(2)`
USING (1) and (2) , we have
`7 xx 64 (1-r)^3 = 64(1-r^3) implies2r^2 - 5R + 2 = 0impliesr=1//2,2`
`therefore ` G.P. is decreasing `impliesr=1//2 ` and a=2
6181.

Find the approximate value of root(4)(17)

Answer»


ANSWER :`2.0312`
6182.

squareABCDEF is a regular hexagone with each side a. bar(AB).bar(AF)+(1)/(2)bar(BC)^(2)= …………

Answer»

a
`a^(2)`
`2A^(2)`
0

Answer :D
6183.

If the angle alpha between two forces of equal magnitude is reduced to (alpha-pi//3), then the magnitude of their resultant becomes (alpha-pi//3),times of the earlier one. The angle alpha is

Answer»

`pi//2`
`2pi//2`
`pi//4`
`4pi//5`

Solution :`sqrt(F^(2)+F^(2)+2F^(2)cos(ALPHA(pi)/(3)))=sqrt3xx[sqrt(F^(2)+F^(2)+2F^(2)cosalpha)]`
on solving `,alpha=(2pi)/(3)"""]"`
6184.

A circle S having centre (alpha, beta) intersect at three points A, B and C such that normals at A,B and C are concurrent at (9,6) for parabola y^(2)=4x and O origin. Then,

Answer»

Sum of modulus of SLOPES of normals at points `A, B` and `C` is 6
`alpha+beta=4`
Magnitude of NORMAL having negative slope is 2
Circle `S` also passes through `O`

Solution :`:'y=mx-2m-m^(3)`
`implies6=9m-2m-m^(3)`
`impliesm^(3)-7m+6=0impliesm=1, +2, -3`
`:.` Centre is `(11/2, 3/2)`
6185.

int_(0)^(3) sqrt((x^(3))/(3-x))dx=

Answer»

`(17pi)/(8)`
`(27 PI)/(8)`
`(34 pi)/(17)`
1

Answer :B
6186.

Minimize and Maximize Z = 3x + 9y subject to the constraints x+3ylt=60 x+ygt=10 xlt=y x gt= 0, y gt= 0 by the graphical method .

Answer»


Answer :Maximum at point (15,5) and (0,20) with VALUE 180 , Minimum at point (5,5)with value 60
6187.

Let S be the set of all real number and let R be relation on S , defined by a R b hArr (1+ab)gt0 then, R is

Answer»

REFLEXIVE and SYMMETRIC but TRANSITIVE
Reflexive and transitive but not symmetric
symmetric and transitive but not reflexive
None of these

Answer :A
6188.

Show that the family of curves for which the slope of the tangent at any point (x,y) on it is (x^(2)+y^(2))/(2xy), is given by x^(2)-y^(2)=Cx

Answer»


ANSWER :`(y^(2) - X^(2)) = PM C_(1) x or x^(2) - y^(2) = Cx`.
6189.

If the equation x ^(2) +ax+12 =9, x ^(2) +bx +15 =0 and x^(2) + (a+b) x +36=0 have a common positive root, then b+2a equal to.

Answer»

`-6`
22
6
`-22`

ANSWER :B
6190.

Which of the following options is the only CORRECT combination

Answer»

`(I) (II)(R) `
`(III) (IV) (P)`
`(II), (iii) (S)`
`(IV) (i) (S)`

Answer :C
6191.

Findthepolynomialwithrationalcoefficientsand whoserootsare a+b,a-b,-a+b,-a-b

Answer»


ANSWER :`x^4 -2 (a^2+b^2)x^2 + (a^2 -b^2)^2 =0`
6192.

Using {1,2,3,4,5} foure digited numbers are formed without repetation at random. The probability that the number so formed is not divisible by 5 is

Answer»

`(1)/(5)`
`(3)/(5)`
`(2)/(5)`
`(4)/(5)`

ANSWER :D
6193.

vec(a),vec(b) and vec( c ) are three vector vec(a)ne0 and |vec(a)|=|vec( c )|=1,|vec(b)|=4,|vec(b)xx vec( c )|=sqrt(15). If vec(b)-2vec( c )=lambda vec(a) then the value of lambda is ………….

Answer»

`-4`
`-2`
1
3

Answer :A
6194.

For a complex number Z = a ib, let hat(Z) = b + ia. If Z_(1), Z_(2) are such complex numbers, then hat(Z_(1)Z_(2)) =

Answer»

`hat(Z)_(1) hat(Z)_(2)`
`hat(Z)_(1) hatbar(Z)_(2)`
`BAR(Z)_(1) hat(Z)_(2)`
`hat(Z)_(1)Z_(2)`

ANSWER :C
6195.

A variable straight line passes through the intersection of x+2y=1,2x-y=1 and meets co-ordinate axes in A and B. The locus of mid-point of AB is :

Answer»

`2x-3y=4`
`(2)/(x)-(3)/(y)=6`
`x+3y=10xy`
`x+y=xy`

Solution :
Let `A(3lambda+7,2lambda+7,lambda+3)`
`B(2k+1,4k-1,3k-1)`
`because` DIRECTION ratios of L are 2,2,1.
`implies(3lambda-2k+6)/(2)=(2lambda-4k+8)/(2)=(lambda-3k+4)/(1)`
`implieslambda=2" and "k=0`
`thereforeA(13,11,5),B(1,-1,-1)`
`implies AB = 18`
6196.

Let a(n) =1-(1)/(2)+(1)/(3)+…+(-1)^(n-1)(1)/(n)," then "(1)/(n+1)+(1)/(n+2)+…+(1)/(2n) is equal to

Answer»

`a (2N)`
`a(2n)-a(N)`
`a(3N)-a(2n)`
NONE of these

Answer :A
6197.

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}],thenverifythat(I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

Answer»


Solution :`if A=[{:(-1,SQRT(3),2),(5,7,9),(-2,1,1):}]=[{:(-1,5,-2),(2,7,1),(3,9,1):}]`
`B=[{:(-4,1,-5),(1,2,0),(1,3,1):}]=[{:(-4,1,1),(1,2,3),(-5,0,1):}]`
`(i) A+B=[{:(-1,2,3),(5,7,9),(-2,1,1):}]+[{:(-4,1,-5),(1,2,0),(1,3,1):}]`
`=[{:(-5,3,-2),(6,9,9),(-1,4,2):}]`
`=[{:(-5 implies (A+B)'=[{:(-5,3,-2),(6,9,9),(-1,4,2):}]=[{:(-5,6,-1),(3,9,4),(-2,9,2):}]`
`and A'+B'=[{:(-1,5,-2),(2,7,1),(3,9,1):}]+[{:(-4,1,1),(1,2,3),(-5,0,1):}]`
`=[{:(-5,6,-1),(3,9,4),(-2,9,2):}]`
`therefore(A+B)'=A'+B'` hence proved
`(ii) A-B=[{:(-1,2,3),(5,7,9),(-2,1,1):}]-[{:(-4,1,-5),(1,2,0),(1,3,1):}]`
`=[{:(3,1,8),(4,5,9),(-3,-2,0):}]`
`implies (A-B)'=[{:(3,1,8),(4,5,9),(-3,-2,0):}]=[{:(3,4,-3),(1,5,-2),(8,9,0):}]`
` and A'-B' =[{:(-1,5,-2),(2,7,1),(3,9,1):}]-[{:(-4,1,1),(1,2,3),(-5,0,1):}]`
`=[{:(3,4,-3),(1,5,-2),(8,9,0):}]`
`therefore (A-B)'=A'B'` hence proved .
6198.

A ball moving around the circle x^(2)+y^(2)-2x-4y-20=0 in anti-clockwise direction leaves it tangentially at the point P(-2,-2). After getting reflected from a straingt line, it passes through the centre of the circle. Find the equation of the straight line if its perpendicular distance from P is 5/2. You can assume that the angle of incidence is equal to the angle of reflection.

Answer»


ANSWER :`=>(4sqrt3-3)X-(4+3sqrt3)y-(39-2sqrt3)=0`.
6199.

Find graphically the minimum value of Z=5x+7y, subject to the constraints given below: 2x+y ge 8, x +2y ge 0 and x, y ge 0

Answer»


SOLUTION :N/A
6200.

Let f_(1) (x)= int_(0)^(x) f(t) dt, f_(2) (x) = int_(0)^(x) f_(1) (t) dt and f_(3) (x) = int_(0)^(x) f_(2) (t) dt if f_(3) (x) =A int_(0)^(x) f(t) (x-t)^(2) dt then the value of A is

Answer»

`1`
`1//2`
`2`
NONE of these

Answer :B