InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 701. |
If x, y are any two non-zero real numbers, a_(ij) =xi + yj, A = (a_(ij))_(m xxn) and P, Q are two n xx n matrices such that A = xP + yQ, then |
|
Answer» <P>P is singular and Q is non-singular |
|
| 702. |
Let [x] denote the greatest integer less than or equal to x, Then the number of points where the function y=[x]+1|1-x|,-1 le x le 3 is not differentiable, is |
|
Answer» 1 |
|
| 704. |
The area of the region bounded by the curves y=2^(x),y=2x-x^(2) and the lines x=0,x=2 is |
|
Answer» |
|
| 705. |
If f(x)={(sqrtx(1+xsin""1/x)","xgt0,),(-sqrt-x(1+xsin""1/x)","xlt0,),(0","""","x=0,):} , thenf(x) is |
|
Answer» continuous as WELL as differentiable at x = 0 |
|
| 706. |
The reaction involved during the removal of temporary hardness of water is: |
|
Answer» `2CaCl_(2)+(NaPO_(3))_(6)rarrNa_(2)(Ca_(2)(PO_(3))_(6))+4NaCl` |
|
| 708. |
If A^(-1)=[[3,-1,1],[-15,6,-5],[5,-2,2]] and B=[[1,2,-2],[-1,3,0],[0,-2,1]]find(AB)^-1 |
|
Answer» SOLUTION :Initiatly find `B^(-1):B^(-1)=(adjB)/(|B|)=[[3,2,6],[1,1,2],[2,2,5]]` Then `(AB)^(-1)=B^(-1)A^(-1)=[[9,-3,5],[-2,1,0],[1,0,2]]` |
|
| 709. |
Pick out the compound proposition which is a taugology. |
|
Answer» <P>`(P^(^^)Q)to p` |
|
| 710. |
If A = [{:(-2),(4),(5):}] and B = [1,3-6], verify that (AB)^(1)= B^(1) A^(1) |
|
Answer» |
|
| 711. |
Find the number of terms in the expansion of (x - 2y + 3z)^10 |
|
Answer» |
|
| 712. |
Consider the parabola y^(2)=12x and match the following lists : |
|
Answer» The equation of tangent having slope m is `y=mx+(3)/(m)` The line 3x-y+1=0 is tangent for m=3. The equation of NORMAL having slope m is `y=mx-6m-3m^(3)`. The line 2x-y-36=0 is normal for m=2. The CHORD of of contact w.r.t any POINT on the directrix isthe FOCAL chord which passes through the focus (3,0). The line 2x-y-6=0 passes through the focus. Chord which subtend right angle at the vertex are CONCURRENT at point `(4xx3,0),i.e.,(12,0)`. The line x-2y-12=0 passes through the point (12,0). |
|
| 713. |
If a**b=(ab)/3on Q^(+) , then 3**(1/5**1/2)is ....... |
|
Answer» `5/160` |
|
| 714. |
Let F be the set of all on-to functions from a set A = {a_(1), a_(2), a_(3), a_(4), a_(5), a_(6)} to another set B = {b_(1), b_(2), b_(3), b_(4), b_(5)}. If a function f is selected from F at random, then find the probability that the selected function f is such that f^(-1) (b_(1)) = {a_(1)} |
|
Answer» |
|
| 715. |
Prove that the segment of the tangent to the hyperbola y = (c )/(x)which is contained between the coordinate axes is bisected at the point of tangency. |
|
Answer» `1:1` |
|
| 716. |
Which of the following species have highest magnetic moment (by using spin only formula ) :- |
| Answer» | |
| 717. |
If vec a. vec a = 0 and vec a. vec b = 0 the what can be concluded about the vector vec b? |
|
Answer» |
|
| 718. |
The solution of 3e^(x) cos^(2) y dx + (1 + e^(x)) cot y dy = 0 is |
|
Answer» `TAN y = c (E^(x) -1)^(3)` |
|
| 719. |
Find the coordinates of the centre of gravity of the figure bounded by the straight line y= (2)/(pi)x and the sinusoid y = sin x (x ge 0) |
|
Answer» |
|
| 720. |
A person observes the angle of elevation of a building as pi//6. The person proceeds towards the building with a speed of 25 (sqrt(3) - 1) m/minutes. After 2 minutes, he observes the angle of elevation as pi//4. The height (in m) of the building is ___________. |
|
Answer» |
|
| 721. |
Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab)is defined. What isthe value of P. |
|
Answer» |
|
| 722. |
If ""^(n-1)C_(3)+^(n-1)C_(4) gt ""^(n)C_(3) then n is just greater than integer |
|
Answer» 5 |
|
| 723. |
Evaluate the following integrals. int_(0)^(pi/2)(sin^(2)x)/(1+sinxcosx)dx |
|
Answer» |
|
| 724. |
Let A = [(0,0,-1),(0,-1,0),(-1,0,0)]. The only correct statement about the matrix A is : |
|
Answer» A is ZERO matrix |
|
| 725. |
int(dx)/(e^x+e^-x)=_____. |
| Answer» SOLUTION :`INT(DX)/(e^x+e^-x)=int(e^xdx)/(1+e^(2X))=int(DT)/(1+t^2)` (where `e^x=trArre^xdx=dt)=tan6-1t+c` | |
| 726. |
Show that int_0^(pi/2)(cosx-sinx)/(1+sinxcosx)dx=0 |
|
Answer» SOLUTION :`int_0^(pi/2)(cosx-sinx)/(1+sinxcosx)DX` =`int_0^(pi/2)(COS(pi/2-x)-SIN(pi/2-x))/(1+sin(pi/2-x)cos(pi/2-x))dx` =`int_0^(pi/2)(cosx-sinx)/(1+sinxcosx)dx` |
|
| 728. |
If |z+barz|+|z-barz|=2 , then z lies on |
| Answer» Answer :A | |
| 729. |
Integral part of (8 + 3sqrt7)^n is |
|
Answer» an even NUMBER |
|
| 730. |
Rectangle ABCDliesin thestandard(x,y )coordinatinateplanewithcornersatA (4,2),B (6,-1) ,C(1,4), andD(-1,-1),and isrepresentedby the2xx4matrix[(4,6,1,-1),(2,-1,-4,-1)] ABCDis thentranslated, withthe cornersofthetranslatedrectanglerepresentedby thematrix [(1,3,-2,-4),(n,-3,-6,-3)] whatis thevalueof n ? |
| Answer» ANSWER :A | |
| 731. |
Obtain the following integrals : int sqrt(5-2x+x^(2))dx |
|
Answer» |
|
| 732. |
If veca=hati+hatj+thatk, vecb =hati+2hatj+3hatk then the value of 't for which (veca+vecb) and (veca-vecb) are perpendicular are |
|
Answer» `pm2` |
|
| 733. |
Solve the following : [[x,1,3],[1,x,1],[3,6,3]]=0 |
|
Answer» Solution :`[[x,1,3],[1,x,1],[3,6,3]]`=0 or, `x[[x,1],[6,3]]-1[[1,1],[3,3]]+3[[1,x],[3,6]]`=0 or, x(3x-6)-0+3(6-3x)=0 `3x^2-6x+18-9x=0` or, `3x^2-15x+18=0` `x^2-5x+6=0` or, (x-3)(x-2)=0 `therefore` x=3 0r, x=2 |
|
| 734. |
Using the Lagrange formula prove the inequality x/(1+x) lt "in" (1+x) lt x " at " x gt 0 |
|
Answer» |
|
| 735. |
The value of e^(itheta)+e^(-itheta) is …...... . |
|
Answer» ` 2 COS THETA` |
|
| 736. |
The equation of one asymptote of the hyperbola 14x^(2)+38y+20y^(2)+x-7y-91=0" is "7x+5y-3=0. Then the other asymptote is |
|
Answer» a,b,C |
|
| 737. |
Let theta in (0,pi//2) . If the eccentricity of the hyperbola x^(2) cos^(2) theta - y^(2) = 6 cos^(2) theta is sqrt(3)times the eccentricity of the ellipse x^(2) + y^(2) cos^(2) theta= 3 theta cos^(2)theta then theta is equal to |
|
Answer» `pi//6` |
|
| 738. |
int_(0)^(pi//6) cos^4 3 theta.sin^2 6 theta d theta equals to |
|
Answer» `pi/96` |
|
| 739. |
Whichof the following is not an odd function ? |
|
Answer» ln `((X ^(4)+x^(2)+1)/((x^(2)+x+1)^(2)))` |
|
| 740. |
A 20 kg car moving at a speed of 0.5m//s to the right collides head on with a 35 kg car at rest. After cllision, the 35kg car is observed to move to the right with a speed of 0.2m//s. Find coefficient of restitution 'e' and fill 100e in the OMR sheet. |
|
Answer» SOLUTION :`20xx0.5=35xx0.2+20xx"V"` `10-7=20" v"` `"v "=+(3)/(20)"m"//"s"=0.15" m"//"s"` `E=(0.2-(0.15))/(0.5-0)=(1)/(10)` |
|
| 741. |
If A = [( 1, cos theta , 1,),( - cos theta ,1,cos theta ),( -1 , - cos theta ,1)] where0 lethetale2 pithen ….. |
| Answer» ANSWER :C | |
| 742. |
Consider the function h(x)=(g^(2)(x))/(2)+3x^(3)-5, where g(x) is a continuous and differentiable function. It is given that h(x) is a monotonically increasing function and g(0) = 4. Then which of the following is not true ? |
|
Answer» `g^(2)(1)gt10` `h'(x)gt0` `rArr""g(x)g'(x)gt-9x^(2)` `rArr""int_(0)^(1)g(x)g'(x)dxgt-int_(0)^(1)9x^(2)dx` `rArr""((g(1))^(2)-(g(x))^(2))/(2)gt-3(1-0)` `rArr""(g(1))^(2)-16gt-6` `rArr""(g(1))^(2)gt10` `""int_(-1)^(0)g(x)g'(x)dx gt -int_(-1)^(0)9x^(2)dx` `rArr""((g(0))^(2)-(g(-1))^(2))/(2)gt-3(0-(-1))` `rArr""16-(g(-1))^(2)gt-6` `rArr""(g(-1))^(2)lt22` `""h(5)gth(0)` `rArr""h(5)gt(g^(2)(0))/(2)+3(0)-5=3` |
|
| 743. |
Find the sum of the infinite series 1-(4)/(5)+(4.7)/(5.10)-(4.7.10)/(5.10.15)+……… |
|
Answer» |
|
| 744. |
For every pair of continuous functions f,g:[0,1] to R such that max {f(x) : x in [0,1]} =" max " {g(x) :x in [0,1]}, the correct statement(s) is (are). |
|
Answer» `(f( C))^(2) + 3F( c) = (g(c ))^(2) + 3G( c)` for some `c in [0,1]` |
|
| 745. |
If the sum of deviation of values from an average is 125 and mean deviation is 8.33, then the number of terms is |
|
Answer» 10 |
|
| 746. |
Evaluate : int (sqrt(1 + sin x))/( 1 + cos x) e^(-(x)/(2))dx |
|
Answer» |
|
| 747. |
Statement-1 : f(x) = x^(7) + x^(6) - x^(5) + 3 is an onto function. and Statement -2 : f(x) is a continuous function. |
|
Answer» Statement-1 is True, Statement-2 is True, Statement-2 is a CORRECT explanation for Statement-1. |
|
| 748. |
Verify A(adjA)=(adjA) A=|A| I in following examples (3) and (4) [{:(2,3),(-4,-6):}] |
|
Answer» |
|
| 749. |
The locus of the point, the sum of the squares of whose distances from n fixed points A_(i)(x_(i),y_(i))i=1,2,3....n. is equal to K^(2)is a circle. |
|
Answer» passing through the origin `underset(i=1)overset(N)(Sigma)([x-x_(i)]^(2)+[y-y_(i)]^(2))=k^(2)impliesn(x^(2)+y^(2))-2x underset(i=1)overset(n)(Sigma)x_(i)-2yunderset(i=1)overset(n)(Sigma)y_(i)+underset(i=1)overset(n)(Sigma)x_(i)^(2)+underset(i=1)overset(n)(Sigma)y_(i)^(2)-K^(2)=0` `implies x^(2)+y^(2)-2((1)/(n)underset(i=1)overset(n)(Sigma)x_(i))x-2((1)/(n)underset(i=1)overset(n)(Sigma)y_(i))y+(1)/(n)(underset(i=1)overset(n)(Sigma)x_(i)^(2)+underset(i=1)overset(n)(Sigma)y_(i)^(2)-K^(2))=0` which is a CIRCLE with centre `((1)/(n)underset(i=1)overset(n)(Sigma)x_(i),(1)/(n)underset(i=1)overset(n)(Sigma)y_(i))` the point of mean position of the given points. |
|
| 750. |
If 1,z_1z_2,……z_(n-1) are the n^th roots of unity, then (1-z_1)(1-z_2)…..(1-z_(n-1))=. |
|
Answer» 0 |
|