Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

If x, y are any two non-zero real numbers, a_(ij) =xi + yj, A = (a_(ij))_(m xxn) and P, Q are two n xx n matrices such that A = xP + yQ, then

Answer»

<P>P is singular and Q is non-singular
P + Q is symmetric and P-Q is skew symmetric
Both P + Q and P -Q are singular
Both P + Q and P -Q are non-singular

Answer :B
702.

Let [x] denote the greatest integer less than or equal to x, Then the number of points where the function y=[x]+1|1-x|,-1 le x le 3 is not differentiable, is

Answer»

1
2
3
4

Answer :D
703.

EvaluateDelta = {:|(3,2,3) ,( 2,2,3),( 3,2,3)|:}

Answer»


ANSWER :`K= DELTA `
704.

The area of the region bounded by the curves y=2^(x),y=2x-x^(2) and the lines x=0,x=2 is

Answer»


Answer :`(3)/(L n 2)- (4)/(3)`
705.

If f(x)={(sqrtx(1+xsin""1/x)","xgt0,),(-sqrt-x(1+xsin""1/x)","xlt0,),(0","""","x=0,):} , thenf(x) is

Answer»

continuous as WELL as differentiable at x = 0
continuous but not differentiable at x = 0
differentiable but not continuous at x = 0
NEITHER continuous nor differentiable at x = 0

Answer :B
706.

The reaction involved during the removal of temporary hardness of water is:

Answer»

`2CaCl_(2)+(NaPO_(3))_(6)rarrNa_(2)(Ca_(2)(PO_(3))_(6))+4NaCl`
`CaCl_(2)+Na_(2)CO_(3)rarrCaCO_(3)darr+2NaCl`
`MgSO_(4)+Na_(2)Al_(2)Si_(2)O_(8)xH_(2)OrarrMgAl_(2)Si_(2)O_(7)xH_(2)O+Na_(2)SO_(4)`
`Ca(HCO_(3))_(2)overset(Delta)rarrCaCO_(3)+H_(2)O+CO_(2)darr`

Answer :d
707.

int_(0)^(pi//2) (dx)/(1 + sin^(2)x)=

Answer»

`(PI)/(2sqrt(2))`
`(pi)/(SQRT(2))`
`pi/2`
0

Answer :A
708.

If A^(-1)=[[3,-1,1],[-15,6,-5],[5,-2,2]] and B=[[1,2,-2],[-1,3,0],[0,-2,1]]find(AB)^-1

Answer»

SOLUTION :Initiatly find `B^(-1):B^(-1)=(adjB)/(|B|)=[[3,2,6],[1,1,2],[2,2,5]]`
Then `(AB)^(-1)=B^(-1)A^(-1)=[[9,-3,5],[-2,1,0],[1,0,2]]`
709.

Pick out the compound proposition which is a taugology.

Answer»

<P>`(P^(^^)Q)to p`
`p to q`
`p to q`
`p^(^^)q to ~p`

ANSWER :A
710.

If A = [{:(-2),(4),(5):}] and B = [1,3-6], verify that (AB)^(1)= B^(1) A^(1)

Answer»


ANSWER :`(AB)^(1) = B^(1) A^(1)`
711.

Find the number of terms in the expansion of (x - 2y + 3z)^10

Answer»


SOLUTION :N/A
712.

Consider the parabola y^(2)=12x and match the following lists :

Answer»


Solution :`atoq,btos,c to p,d tor`.
The equation of tangent having slope m is
`y=mx+(3)/(m)`
The line 3x-y+1=0 is tangent for m=3.
The equation of NORMAL having slope m is `y=mx-6m-3m^(3)`.
The line 2x-y-36=0 is normal for m=2.
The CHORD of of contact w.r.t any POINT on the directrix isthe FOCAL chord which passes through the focus (3,0).
The line 2x-y-6=0 passes through the focus.
Chord which subtend right angle at the vertex are CONCURRENT at point `(4xx3,0),i.e.,(12,0)`.
The line x-2y-12=0 passes through the point (12,0).
713.

If a**b=(ab)/3on Q^(+) , then 3**(1/5**1/2)is .......

Answer»

`5/160`
`1/30`
`3/160`
`3/60`

SOLUTION :N/A
714.

Let F be the set of all on-to functions from a set A = {a_(1), a_(2), a_(3), a_(4), a_(5), a_(6)} to another set B = {b_(1), b_(2), b_(3), b_(4), b_(5)}. If a function f is selected from F at random, then find the probability that the selected function f is such that f^(-1) (b_(1)) = {a_(1)}

Answer»


ANSWER :`(2)/(15)`
715.

Prove that the segment of the tangent to the hyperbola y = (c )/(x)which is contained between the coordinate axes is bisected at the point of tangency.

Answer»

`1:1`
`1:2`
`1:3`
NONE of these

Answer :A
716.

Which of the following species have highest magnetic moment (by using spin only formula ) :-

Answer»

`Cu^+`
`CR^(2+)`
`Mn^(2+)`
`CO^(3+)`

717.

If vec a. vec a = 0 and vec a. vec b = 0 the what can be concluded about the vector vec b?

Answer»


ANSWER :VECTOR `VECB` can be any vector
718.

The solution of 3e^(x) cos^(2) y dx + (1 + e^(x)) cot y dy = 0 is

Answer»

`TAN y = c (E^(x) -1)^(3)`
`tan y = c (e^(x) + 1)^(3)`
`tan y = c (e^(x) -1)^(2)`
`cos y = c (e^(x) -1)^(3)`

Answer :A
719.

Find the coordinates of the centre of gravity of the figure bounded by the straight line y= (2)/(pi)x and the sinusoid y = sin x (x ge 0)

Answer»


ANSWER :`(12-pi^(2))/(12-3pi)`
720.

A person observes the angle of elevation of a building as pi//6. The person proceeds towards the building with a speed of 25 (sqrt(3) - 1) m/minutes. After 2 minutes, he observes the angle of elevation as pi//4. The height (in m) of the building is ___________.

Answer»


ANSWER :`50.00`
721.

Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab)is defined. What isthe value of P.

Answer»


ANSWER :1
722.

If ""^(n-1)C_(3)+^(n-1)C_(4) gt ""^(n)C_(3) then n is just greater than integer

Answer»

5
6
4
7

Answer :D
723.

Evaluate the following integrals. int_(0)^(pi/2)(sin^(2)x)/(1+sinxcosx)dx

Answer»


ANSWER :`(PI)/(3SQRT3)`
724.

Let A = [(0,0,-1),(0,-1,0),(-1,0,0)]. The only correct statement about the matrix A is :

Answer»

A is ZERO matrix
`A = (-1)= I , ` whereI is a unit matrix
`A^(-1)` does not exist
`A^(2)=I `

ANSWER :D
725.

int(dx)/(e^x+e^-x)=_____.

Answer»

SOLUTION :`INT(DX)/(e^x+e^-x)=int(e^xdx)/(1+e^(2X))=int(DT)/(1+t^2)` (where `e^x=trArre^xdx=dt)=tan6-1t+c`
726.

Show that int_0^(pi/2)(cosx-sinx)/(1+sinxcosx)dx=0

Answer»

SOLUTION :`int_0^(pi/2)(cosx-sinx)/(1+sinxcosx)DX`
=`int_0^(pi/2)(COS(pi/2-x)-SIN(pi/2-x))/(1+sin(pi/2-x)cos(pi/2-x))dx`
=`int_0^(pi/2)(cosx-sinx)/(1+sinxcosx)dx`
727.

sin^(-1)(3 x/2) + cos^(-1 ) ( 3 x/2)= ……..

Answer»

`(3 PI)/(2)`
`6X`
`3X`
`(pi)/(2)`

ANSWER :D
728.

If |z+barz|+|z-barz|=2 , then z lies on

Answer»

a straight LINES
a square
a CIRCLE
NONE

Answer :A
729.

Integral part of (8 + 3sqrt7)^n is

Answer»

an even NUMBER
an ODD number
an even or an odd number depending upon the value of n
nothing can be SAID

Answer :B
730.

Rectangle ABCDliesin thestandard(x,y )coordinatinateplanewithcornersatA (4,2),B (6,-1) ,C(1,4), andD(-1,-1),and isrepresentedby the2xx4matrix[(4,6,1,-1),(2,-1,-4,-1)] ABCDis thentranslated, withthe cornersofthetranslatedrectanglerepresentedby thematrix [(1,3,-2,-4),(n,-3,-6,-3)] whatis thevalueof n ?

Answer»

`0`
`-1`
`-2`
`-3`

ANSWER :A
731.

Obtain the following integrals : int sqrt(5-2x+x^(2))dx

Answer»


ANSWER :`(x-1)/(2) * SQRT(x^(2)-2x+5)+2log|(x-1)+sqrt(x^(2)-2x+4)|+C`
732.

If veca=hati+hatj+thatk, vecb =hati+2hatj+3hatk then the value of 't for which (veca+vecb) and (veca-vecb) are perpendicular are

Answer»

`pm2`
`PM 2 sqrt3`
`pm 3 SQRT2`
`pm 3`

Answer :B
733.

Solve the following : [[x,1,3],[1,x,1],[3,6,3]]=0

Answer»

Solution :`[[x,1,3],[1,x,1],[3,6,3]]`=0
or, `x[[x,1],[6,3]]-1[[1,1],[3,3]]+3[[1,x],[3,6]]`=0
or, x(3x-6)-0+3(6-3x)=0
`3x^2-6x+18-9x=0`
or, `3x^2-15x+18=0`
`x^2-5x+6=0`
or, (x-3)(x-2)=0
`therefore` x=3 0r, x=2
734.

Using the Lagrange formula prove the inequality x/(1+x) lt "in" (1+x) lt x " at " x gt 0

Answer»


ANSWER :`(1+X)=x/(XI)(1ltxilt1+x)`
735.

The value of e^(itheta)+e^(-itheta) is …...... .

Answer»

` 2 COS THETA`
`cos theta`
`2 SIN theta`
`sin theta`

ANSWER :A
736.

The equation of one asymptote of the hyperbola 14x^(2)+38y+20y^(2)+x-7y-91=0" is "7x+5y-3=0. Then the other asymptote is

Answer»

a,b,C
b,c,a
c,a,b
c,b,a

Answer :B
737.

Let theta in (0,pi//2) . If the eccentricity of the hyperbola x^(2) cos^(2) theta - y^(2) = 6 cos^(2) theta is sqrt(3)times the eccentricity of the ellipse x^(2) + y^(2) cos^(2) theta= 3 theta cos^(2)theta then theta is equal to

Answer»

`pi//6`
`pi//4`
`COS^(-1)(1//sqrt(3))`
`pi//3`

ANSWER :B
738.

int_(0)^(pi//6) cos^4 3 theta.sin^2 6 theta d theta equals to

Answer»

`pi/96`
`5/192`
`5pi/256`
`5pi/192`

ANSWER :D
739.

Whichof the following is not an odd function ?

Answer»

ln `((X ^(4)+x^(2)+1)/((x^(2)+x+1)^(2)))`
SGN (sgn(x))
sin (tan x)
`f (x),` where `f (x)+ f ((1)/(x)) =f(x) f ((1)/(x))AA x in R-{0} and f(2) =33`

Answer :D
740.

A 20 kg car moving at a speed of 0.5m//s to the right collides head on with a 35 kg car at rest. After cllision, the 35kg car is observed to move to the right with a speed of 0.2m//s. Find coefficient of restitution 'e' and fill 100e in the OMR sheet.

Answer»

SOLUTION :`20xx0.5=35xx0.2+20xx"V"`
`10-7=20" v"`
`"v "=+(3)/(20)"m"//"s"=0.15" m"//"s"`
`E=(0.2-(0.15))/(0.5-0)=(1)/(10)`
741.

If A = [( 1, cos theta , 1,),( - cos theta ,1,cos theta ),( -1 , - cos theta ,1)] where0 lethetale2 pithen …..

Answer»

`(2,OO)`
`(2,4)`
[2,4]
[-2,2]

ANSWER :C
742.

Consider the function h(x)=(g^(2)(x))/(2)+3x^(3)-5, where g(x) is a continuous and differentiable function. It is given that h(x) is a monotonically increasing function and g(0) = 4. Then which of the following is not true ?

Answer»

`g^(2)(1)gt10`
`h(5)GT3`
`h((5)/(2))lt2`
`g^(-1)lt22`

Solution :`h(X)=(g^(2)(x))/(2)+3x^(3)-5`
`h'(x)gt0`
`rArr""g(x)g'(x)gt-9x^(2)`
`rArr""int_(0)^(1)g(x)g'(x)dxgt-int_(0)^(1)9x^(2)dx`
`rArr""((g(1))^(2)-(g(x))^(2))/(2)gt-3(1-0)`
`rArr""(g(1))^(2)-16gt-6`
`rArr""(g(1))^(2)gt10`
`""int_(-1)^(0)g(x)g'(x)dx gt -int_(-1)^(0)9x^(2)dx`
`rArr""((g(0))^(2)-(g(-1))^(2))/(2)gt-3(0-(-1))`
`rArr""16-(g(-1))^(2)gt-6`
`rArr""(g(-1))^(2)lt22`
`""h(5)gth(0)`
`rArr""h(5)gt(g^(2)(0))/(2)+3(0)-5=3`
743.

Find the sum of the infinite series 1-(4)/(5)+(4.7)/(5.10)-(4.7.10)/(5.10.15)+………

Answer»


SOLUTION :N/A
744.

For every pair of continuous functions f,g:[0,1] to R such that max {f(x) : x in [0,1]} =" max " {g(x) :x in [0,1]}, the correct statement(s) is (are).

Answer»

`(f( C))^(2) + 3F( c) = (g(c ))^(2) + 3G( c)` for some `c in [0,1]`
`(f( c))^(2) + f( c) = (g( c))^(2) + 3g (c )` for some `c in [0,1]`
`(f(c ))^(2) + 3f (c ) = (g( c))^(2) + g( c)` for some `c in [0,1]`
`(f( c))^(2) = (g( c))^(2)` for some `c in [0,1]`

Answer :A::D
745.

If the sum of deviation of values from an average is 125 and mean deviation is 8.33, then the number of terms is

Answer»

10
15
9
12

Answer :B
746.

Evaluate : int (sqrt(1 + sin x))/( 1 + cos x) e^(-(x)/(2))dx

Answer»


ANSWER :`- E^((x)/(2)) sec""(x)/(2) + C `
747.

Statement-1 : f(x) = x^(7) + x^(6) - x^(5) + 3 is an onto function. and Statement -2 : f(x) is a continuous function.

Answer»

Statement-1 is True, Statement-2 is True, Statement-2 is a CORRECT explanation for Statement-1.
Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
Statement -1 is FALSE, Statement -2 is False
Statement -1 is False, Statement -2 is True

Answer :B
748.

Verify A(adjA)=(adjA) A=|A| I in following examples (3) and (4) [{:(2,3),(-4,-6):}]

Answer»


ANSWER :`[{:(0,0),(0,0):}]`
749.

The locus of the point, the sum of the squares of whose distances from n fixed points A_(i)(x_(i),y_(i))i=1,2,3....n. is equal to K^(2)is a circle.

Answer»

passing through the origin
with centre at origin
with centre at a point of mean position of the given POINTS
None of these

Solution :Let `(x,y)` be any point on the locus, then
`underset(i=1)overset(N)(Sigma)([x-x_(i)]^(2)+[y-y_(i)]^(2))=k^(2)impliesn(x^(2)+y^(2))-2x underset(i=1)overset(n)(Sigma)x_(i)-2yunderset(i=1)overset(n)(Sigma)y_(i)+underset(i=1)overset(n)(Sigma)x_(i)^(2)+underset(i=1)overset(n)(Sigma)y_(i)^(2)-K^(2)=0`
`implies x^(2)+y^(2)-2((1)/(n)underset(i=1)overset(n)(Sigma)x_(i))x-2((1)/(n)underset(i=1)overset(n)(Sigma)y_(i))y+(1)/(n)(underset(i=1)overset(n)(Sigma)x_(i)^(2)+underset(i=1)overset(n)(Sigma)y_(i)^(2)-K^(2))=0`
which is a CIRCLE with centre `((1)/(n)underset(i=1)overset(n)(Sigma)x_(i),(1)/(n)underset(i=1)overset(n)(Sigma)y_(i))` the point of mean position of the given points.
750.

If 1,z_1z_2,……z_(n-1) are the n^th roots of unity, then (1-z_1)(1-z_2)…..(1-z_(n-1))=.

Answer»

0
`n-1`
n
1

Answer :C