Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

751.

A subset of the additive group of real numbers which is not a sub group is

Answer»

`({0}, +)`
`(Z,+)`
`(N,+)`
`(Q,+)`

ANSWER :C
752.

Forthe equation |x^(2)| + |x| -6=0, the roots are

Answer»

Real and equal
Real with SUM 0
Real with sum 1
Real with product 0

ANSWER :B
753.

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we getl=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

Answer»

`LN(LNX)+c`
`X+lnx+c`
`(x)/(lnx)+c`
none of these

Answer :C
754.

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-3^(2)))+....+1/n)=

Answer»

`pi/4`
`pi/2`
`pi/6`
`pi/3`

ANSWER :B
755.

Evaluate int cot^(4) xdx

Answer»


ANSWER :`-(COT^(3)X)/(3)+cotx+x+c`
756.

int tan^-1 sqrtx dx is equal to:

Answer»

`(X+1)tan^-1 SQRTX-sqrtx+c`
`x tan^-1 sqrtx-sqrtx+c`
`sqrtx-x tan^-1 sqrtx+c`
`sqrtx-(x+1) tan^-1 sqrtx+c`

ANSWER :A
757.

Evaluate the following:lim_(xtoinfty)log_e(1+a/x)^x

Answer»

SOLUTION :`lim_(xtoinfty)log_e``(1+a/X)^x`
`=log_e{lim_(xtoinfty)(1+a/x)^x}`
`log_ee^a=alog_e`
`e=a[thereforelim_(x to INFTY)(1+a/x)^x=e^a
758.

If (a + ib)^5 = alpha+ibeta then (b + ia)^5 is equal to

Answer»

`beta+ialpha`
`alpha-ibeta`
`beta-ialpha`
`-alpha-ibeta`

ANSWER :A
759.

int (dx)/(sqrt(1 - x^2)) is equal to :

Answer»

log|x+sqrt(1-x^2)|+C
sin^-1x+C
tan^-1x+C
cos^-1x+C

Answer :B
760.

Assertion (A) (x^(2)-1)/(x^(2))e^(x^(2)+1)/x dx = e^(x^(2)+1)/x + c Reason ( R) intf^(')(x)e^(f(x))dx = f(x) +c

Answer»

Both A and R are true and R is the correct explanation of A
Both A and B are true and R is not the correct explanatiion of A
A is true but R is false
A is false but R is true

Answer :C
761.

The shortest distance between the line r = (I + 2j + 3k) + t (I + 3j + 2k) and r = (4i +5j + 6k) + t (2i + 3j + k) is

Answer»

3
`2 sqrt(3)`
`sqrt(3)`
`sqrt(6)`

ANSWER :C
762.

Findthe areaof theregionboundedby theparabolay^2 = 2pxand x^2 = 2py.

Answer»


ANSWER :`=(4p^2)/(3)` SEQ. UNITS
763.

Find the maximum and minimum values in the following functions :x^(3)-9x^(2)+15x-1,

Answer»


ANSWER :MAXIMUM value 6 at x = 1
Minimum value `-36` at x = 5
764.

Find the value of [a] if the lines (x-2)/3= (y +4)/2 =(z -1)/5" & " (x +1)/(-2) =(y -1)/3 = (z -a)/4 are coplanar (where [] denotes greatest integer function)

Answer»


Solution :`|(3,-5,1-a),(3,2,5),(-2,3,4)|= 0 rArr a = (102)/(13)`
765.

The solution of (x)^(2)+(x+1)^(2)=25 (where (.) denotes the least integer function) is

Answer»

(2, 4)
`(-5,-4]UU(2,3]`
`[-4,-3)uu[3,4)`
none of these

ANSWER :B
766.

Rectangle A has twice the area of Rectangle B. The width of Rectangle A is less than 1/2 the width of Rectangle B. {:("Quantity A","Quantity B"),("The area of Rectangle A","The area of Rectangle B if its"),(,"width is increased by more"),(,"then 2"):}

Answer»

Quantity A is greater.
Quantity B is greater.
The two QUANTITIES are equal.
The RELATIONSHIP cannot be DETERMINED from the INFROMATION given.

Answer :D
767.

If A is any aquare matrix of order 3xx3 then |3A| is equal to

Answer»

a.`3|A|`
B.`(1)/(3)|A|`
C.`27|A|`
d.`9|A|`

ANSWER :C
768.

If f(x+y)=f(x)+f(y) AA x, y in R and f'(0) exists and sum_(r=16)^(40)intf(x)dx=20900. Then find the area of the region R that in completely bounded by the graph of y_(1)=f(x)-1 and y_(2)=x^(2)-4.

Answer»


ANSWER :`(32)/(3)" SQ. UNITS"`
769.

Sigma_(r=1)^(oo)tan^(-1) (2/((r +2))) is

Answer»

`pi - (TAN^(-1) 2 + tan ^(-1) 3) `
` pi/4`
` (7pi)/4`
` pi + ( tan^(-1) 2 + tan^(-1) 3)`

ANSWER :A::B
770.

If m gt 0, n gt 0, the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n), called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)). Obviously, beta(n, m)=beta(m, n). If int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx, then k is equal to

Answer»

`(m)/(N)`
1
`(n)/(m)`
NONE of these

Answer :B
771.

If (a+bi)^(11) = x + iy, where a, b, x, y in R, then (b + ai)^(11) equals

Answer»

y + IX
`-y - ix`
`-X-iy`
x + iy

Answer :B
772.

If a vector vecr is equall inclined with the vectors veca=costhetahati+sinthetahatj, vecb=-sinthetahati+costhetahatj and vecc=hatk, then the angle between vecr and veca is

Answer»

`cos^(-1)(1/sqrt(2))`
`cos^(-1)(1/sqrt(3))`
`cos^(-1)(1/3)`
`cos^(-1)(1/2)`

SOLUTION :`veca=costhetahati+sinthetahatj`
`vecb=-sinthetahati+costhetahatj`
and `vecc=hatk`
`|veca|=|vecb|=|vecc|` and `veca.vecb=vecb.vecc=vecc.veca`
`therefore` Required angle is `cos^(-1)(1/sqrt(3))`
773.

If alpha, beta , gamma are the roots of 2x^(3)-2x-1=0, ( Sigma alpha beta)^(2) is equal to

Answer»

`B+q`
`b-q`
`1/2 (b+q`
`1/2 (b-q)`

ANSWER :B
774.

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c inte^(x)((1+sinxcosx)/(cos^(2)x))dx is equal to

Answer»

e^(X)F(x)+c`
`e^(x)tan^(2)x+c`
`e^(x)log|secx|+c`
none of these

Answer :D
775.

Find k if the following pairs of circles are orthogonal x^2+y^2-16y-k=0 x^2+y^2+4x-8=0

Answer»


ANSWER :k=-8
776.

Match the values of x in List II where derivative of the function in List I is negative.

Answer»

<P>

Solution :`ararrp,R,brarrq,s,crarrq,r,drarr.`
a. p,q,r
The GRAPH of `y=|x^(2)-2|x||:`

From the graph, `dy//dx` is negative for `(p),(q),(r)`
b. q,s
The graph of `y=|log|x||:`
ltbvrgt From the graph, `dy//dx` is negative for (q),(s).
c. q,r
`y=x[x//2]={{:(-2x",",-4lexlt-2),(-x",",-2xlexlt0),(0",", 0le XLT 2),(x",", 2ltxlt4):}`
Hence, `dy//dx` is negative for (q), (r)
d. r
The graph of `y=|sin x|`

From the graph, `dy//dx` is negative for (r).
777.

Ifalpha , beta in (0,pi/2), sinalpha =4/5andcos( alpha+ beta) = ( -12)/(13)then sinbetais equalto

Answer»

`(63)/( 65 )`
`(61)/(65)`
`(5)/(13)`
`(8)/(65)`

Answer :A
778.

int_(0)^(1)(1-x)/(1+x)dx=

Answer»

`2 LN 2-1`
`ln 2`
`ln 2+1`
`2 ln 2 +1`

ANSWER :A
779.

Let L_(1):(x-2)/(2)=(y-3)/(-1)=(z-1)/(3),L_(2):(x-2)/(-1)=(y-3)/(3)=(z-1)/(5/3) and L_(3):(x-2)/(-32)=(y-3)/(-19)=(z-1)/(15) are three lines intersecting each other at the point P and a given plane at A,B,C respectively, such that PA=2,PB=3,PC=6. The volume ( in cubic units) of the tetrahedron PABC is

Answer»

2
18
6
10

Answer :C
780.

Let S be the standard deviation of n observations. Each of the n observations is multiplied by a constant c. Then the standard deviation of the resulting numbers is :

Answer»

S
cS
`S SQRT(C)`
None of these

ANSWER :B
781.

Let A = {1, 2, 3) and B= {a,b,c}, andf= {(1, a),(2, b), (P, c)} be a function from A to B. For the function f to be one-one and onto the value of P =

Answer»

1
2
3
4

Answer :C
782.

Evaluate int_(0)^(t)[|sin^(-1)(sinx)|]dx" where "tin(2npi,(8n+1)(pi)/(4)).

Answer»


ANSWER :`2N[pi-2]`
783.

Find the value of the sqrt199correct to 4 decimal places

Answer»


ANSWER :`14.1071`
784.

Let 'A' be the area bounded by the curves y^(2) = 4k_(1)x, k_(1) in [1/8, 1/4] x^(2) = 4k_(2) (2-y), k_(2) in [1/4, 1] and y-axis in the first quadrant. Then the least value of A is

Answer»


Solution :
Required
`A=int_(0)^(1)(2-X^(2) -sqrt(x)) DX`
`=2-1/3 - 2/3 = 2-1=1`
785.

If A(-2, 1), B(0, -2), C(1, 2) are the vertices of a triangle ABC, then the perpendicular distance from its circumcentre to the side BC is

Answer»

A.`(7sqrt(13))/22`
B.`(3sqrt(17))/22`
C.`(5sqrt(10))/11`
D.`sqrt(2026)/22`

Answer :B
786.

The point of contact of 9x+8y-11=0 to the hyperbola 3x^(2)-4y^(2)=11 is

Answer»

(3,-2)
(3,2)
(-3,-3)
(3,3)

ANSWER :A
787.

If an arithmetic series sumtn converges, which of the following is true about t_n?

Answer»

`t_nlt1`
`|t_n|lt1`
`t_n=0`
`t_nto0`

788.

Find underset(n to oo)lim x_(n) if (a) x_(n=sqrt(2n+3)-sqrt(n-1) (b) x_(n)=sqrt(n^(2)+n+1)-sqrt(n^(2)-n+1), (c) x_(n)=n^(2) (n-sqrt(n^(2)+1)) (d) x_(n)=root3(n^(2)-n^(3))+pi (e) x_(n)=(sqrt(n^(2)+1)+sqrtn)/(root5(n^(3)+n-sqrtn) (f) x_(n)=root(n+1)^(2)-root3(n-1)^(2), (g) x_(n)=(1-2+3-4+5-6+...-2n)/(sqrt(n^(2)+!)+sqrt(4n^(2)-1)) (g) x_(n)=1/(1.2)+1/(2.3)+(1)/(3.4)+.....+(1)/(n(n+10)

Answer»


ANSWER :(B) 1; (F) 0
789.

Box-I contains 2 gold coins, while another Box-II contains 1 goldand 1 silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold?

Answer»


ANSWER :`= ((1)/(3))/( (3)/(4) ) = (2)/(3)`
790.

If (1)/(3){:[(1,2,3),(2,1,-1),(-2,2,-1):}] and A*A^(T)=I A^(-1) is

Answer»

`-A`
`A+A^(T)`
`A^(T)-A`
NONE of these

Answer :D
791.

int(x^(9))/((4x^(2)+1)^(6)) dx

Answer»

`(1)/(5x)(4+(1)/(x^(2)))^(5)`
`(1)/(5)(4+(1)/(x^(2)))^(-5)`
`(1)/(10X) (1+4x^(2))^(-5)`
`(1)/(10)(4+(1)/(x^(2)))^(-5)`

Answer :D
792.

Solve the following Linear Programming Problems graphically : Maximise Z = 5x + 3y subject to 3x+5y le 15, 5x+2y le 10, x ge 0, y ge 0

Answer»

<P>

ANSWER :The maximum value of Z = 5x + 3Y is `235/19` at a POINT `P(20/19, 45/19)`
793.

Find the area of the region enclosed by the given curves . y=cosx , y=sin2x , x=0, x=(pi)/(2)

Answer»


ANSWER :`(1)/(2)`
794.

(i) Find the direction in which a straight line must be drawn torough the points (1,2) so that its point of intersection with the line x+y=4 may be the a distance sqrt((2)/(3)) from this point. (ii) A straight line through P(-15,-10) meets the straight lies x-y-1=0,x+2y=5and x+3y=7 respectively at A,B and C, if (12)/(PA)+(40)/(PB)=(52)/(PC), then prove that the straight line passes through origin.

Answer»

<P>

Solution :(i) Let the straight line through `P(1,2)` cut the given straight line `x+y=4` at Q and the straight line is inclined at an angle `theta` with positive direction of x-axis. Then its equation is `(x-1)/(costheta)=(y-2)/(sintheta)=r,PQ=r.`
The coordinates of the point Q are `(1+r cos theta, 2+r sin theta)`
Which lies on `x+y=4`
`impliessqrt((2)/(3))(cos theta+sin theta)=1,r=sqrt((2)/(3)),` given
`impliescos theta+sin theta=sqrt((3)/(2))`
`IMPLIES(1)/(sqrt(2))costheta+(1)/(sqrt2)sin theta=(1)/(sqrt2)sqrt((3)/(2))=(sqrt3)/(2)`
`impliescos(theta-(pi)/(4))=cos""(pi)/(6)`
`impliestheta-(pi)/(4)=(pi)/(6)or -(pi)/(6)`
`impliestheta=(pi)/(4)+(pi)/(6)or (pi)/(4)-(pi)/(6)`
`impliestheta=(5pi)/(12)or =(pi)/(12)`

(ii) Let the equation of straight line passing THROUG `P(-15,-10)` be `(x+15)/(costheta)=(y+10)/(sin theta)`
which cuts the given straight LINES
`x-y-1=0,x+2y=5andx+3y=7` at A, B

and C respectively.
Any point on this line may be takes as
`(-15+rcostheta,-10+rsintheta)`
For the coordinates of the point `A,(-15rcostheta,-10+r sin theta)` lies on `x-y-1=0`
`implies-15+r cos theta+10-r sin theta-1=0`
`impliesr (cos theta-sin theta)=6`
`implies(6)/(PA)= cos theta-sin theta`
Also for `B,l15+r cos theta-20+2rsin theta=5`
`impliesr(cos theta+2sin theta)=40`
`implies(40)/(PB=cos theta2 sin theta`
and for the point `C,15+r cos theta-30+3rsin theta=7`
`impliesr(cos theta+2sin theta)=52`
`impliescos theta+3sin theta=(52)/(PC)`
Now from the given condition,
`(12)/(PA)+(40)/(PB)=(52)/(PC)`
`implies2(cos theta-sin theta)+costheta+2sintheta=costheta+3sintheta`
`implies2cos theta=3sinthetaimplies(cos theta)/(3)=(sin theta)/(2)`
Hence the required equation of the straight line is
`(x+15)/(3)=(y+10)/(2)`
`implies2x+30=3y+30`
`implies2x-3y=0`
which passes through ORIGIN.
795.

Which kind .............

Answer»


SOLUTION :`[(M,a_(5),b)]` does not show GL and OL.
796.

If the line x=y=z intersect the line xsinA+ysinB+zsinC-2d^(2)=0=xsin(2A)+ysin(2B)+zsin(2C)-d^(2), where A, B, C are the internal angles of a triangle and "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2)=k then the value of 64k is equal to

Answer»


ANSWER :`(4)`
797.

If thelocus of the complex number z given by arg(z+i)-arg(z-i)=(2pi)/(3) is an arc of a circle, then the length of the arc is

Answer»

`(4pi)/(3)`
`(4pi)/(3SQRT3)`
`(2SQRT3)/(3)`
`(2pi)/(3sqrt3)`

ANSWER :B
798.

if |{:(a^(2)+lamda^(2),ab+clamda,ca-blamda),(ab-clamda,b^(2)+lamda^(2),bc+alamda),(ca+blamda,-bc+alamda,c^(2)+lamda^(2)):}||{:(lamda,c,-b),(-c,lamda,a),(b,-a,lamda):}|=(1+a^(2)+b^(2)+c^(2))^(3), then find the value of lamda

Answer»


Solution :We observe that the elements in the prefactor are the confactors of the correspoinding elements of the post FACTOR.
HENCE, `L.H.S=|{:(lamda,C,-b),(-c,lamda,a),(b,-a,lamda):}|^(3)=[lamda(lamda^(2)+a^(2)+b^(2)+c^(2))]^(3)=(1+a^(2)+b^(2)+c^(2))^(3)implieslamda=1`
799.

If f (x) ={{:( xcos ((1)/(x)) ,"for " xne 0),( 0,"for " x=0) :},then at x =0

Answer»

F(x) is not CONTINUOUS
f (x) is DIFFERENTIABLE
f(x) is continuous and differentiable
f (x) is continuous but not differentiable

ANSWER :C
800.

Let x_(1), x_(2), …… , x_(n) be in an A.P. If x_(1) + x_(4) + x_(9) + x_(11) + x_(20) + x_(22) + x_(27) + x_(30) = 272, then x_(1) + x_(2) + x_(3) + ...... + x_(30) is equal to

Answer»

1020
1200
716
2720

Answer :A