Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

7451.

Examine for the rational roots of x^8 - 3x + 1=0

Answer»


ANSWER :NO ROOTS
7452.

Statement-1 : cos.(pi)/(7)cos.(2pi)/(7)cos.(4pi)/(7)=-(1)/(8) Statement-2 : costhetacos2thetacos2^(2)thetaunderset(cos2^(n-1)theta)(............)=-(1)/(2^(n))" if "theta=(pi)/(2^(n)-1)

Answer»

Statement-1 is TRUE, statement-2 is true, statement-2 is a CORRECT EXPLANATION for statement-1
Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1
Statement-1 is true, statement-2 is FALSE
Statement-1 is false, statement-2 is true

Answer :A
7453.

Show that each of the given three vectors is a unit vector. (1)/(7)(2hati+3hatj+6hatk),(1)/(7)(3hati-6hatj+2hatk),(1)/(7)(6hati+2hatj-3hatk)Also , show that they are mutually perpendicular to each other.

Answer»


Answer :HENCE, `vec(a),vec(B)` and `vec( C )` are MUTUALLY perpendicualr.
7454.

The nummber of tangents to x^(2)//9-y^(2)//4=1 throught (6,2) is

Answer»

0
1
2
3

Answer :A
7455.

Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

Answer»


ANSWER :`X = (1)/(4)`
7456.

The term independent of x in the expansion of (3/2x^(2) - 1/(3x))^(9) is

Answer»

`7/18`
`5/18`
`11/18`
`13/18`

ANSWER :A
7457.

{:(,"Hyperbola",,"Foci "),(I,((x-1) ^(2) )/(16) - ((y-2)^(2) )/(9) =1,,(a) ("1,-1")("-9,-1")),(II,((x+2)^(2) )/(9) - ((y-3) ^(2) )/(27) =1 ,,(b) ("6,2") ("-4,2")),(III,((x+1)^(2) )/(25) -((y+2)^(2) )/(16)= 1 ,,(c) ("4,3") ("-8,3")),(IV,9x^(2) -4y(2) =8","(2","-) ,,(d) (-1pm sqrt (41) ","-2)):}

Answer»

a,b,c,d
a,d,b,c
c,a,b,d
b,c,d,a

Answer :D
7458.

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx=

Answer»

`pi+2`
`pi-2`
`4-pi`
`4+pi`

ANSWER :C
7459.

Using integration, find the area of the following region: R={(x,y):x^2leyle|x|}

Answer»


ANSWER :`1/3` sq.unit
7460.

int_(0)^(pi//2) (200 sinx + 100 cosx)/(sinx + cosx) dx is equal to

Answer»

`50PI`
`25pi`
`75pi`
`150pi`

ANSWER :C
7461.

Find the scalar product of the following pairs of vectors and the angle between them. 2hati-3hatj+6hatk and 2hati-3hatj-5hatk

Answer»

Solution :LET `veca = 2hati-3hatj+6hatk, vecb = 2hati-3hatj-5hatk`
Then `|veca| = sqrt(4+9+36) = 7`
`|vecb| = sqrt(4+9+25) = sqrt(38)`
`veca.vecb = 4+9-30 = -17`
If `THETA` is the angle between `veca` and `vecb` then
`theta = cos^(-1) ((veca.vecb)/(|veca||vecb|)) = cos^(-1) ((-17)/(7sqrt(38)))`.
7462.

If A=[{:(3,1),(7,5):}] and A^2+xI=yA then find X and Y. Hence find A^(-1)

Answer»


ANSWER :`UNDERSET(y=8)OVERSET(x=8)""A^(-1)=1/8[{:(5,-1),(-7,3):}]`
7463.

If vecaxxvecb = vecbxxvecc ne vec0, prove that veca+vecc = mvecb, where m is a scalar.

Answer»

Solution :`vecaxxvecb = VECBXXVECC ne VEC0`
`implies vecaxxvecb-vecbxxvecc = vec0`
`impliesvecaxxvecb+veccxxvecb = vec0[because vecbxxvecc = -veccxxvecb]`
`implies (veca+vecc)xxvecb = vec0`
`implies veca+vecc` is PARALLEL to `vecb`
`implies veca+vecc = mvecb` for some SCALAR m.(Proved)
7464.

Findtheareaof theregionboundedby thecirclesx^2+ y^2 = 16 and(x+4)^2 +y^2=16

Answer»


Answer :`((32 pi)/(3) - 8 SQRT(3) )` sq . Units
7465.

int(1)/(sin^(2)x cos^(2)x)dx=

Answer»

TAN X + COT x + C
tan x – cot x + C
tan x cot x + C
tan x – cot 2X + C

Answer :B
7466.

Find the maximum sum of the A.P. 40 +38+36+34+32+……………

Answer»


ANSWER :420
7467.

If (1,3) and (2,k)are conjugate points with respect to the circlex^(2) + y^(2) = 35, then find k .

Answer»


ANSWER :`11`
7468.

Find the area of the region{(x,y):0 le y le x^(2)+1,0 le y le x + 1,0 le x le 2}.

Answer»


ANSWER :`(23)/(6)` SQ. UNITS.
7469.

Volume of a tetrahedron is k area of one face) (length of perpendicular from the opposite vertex upon it). where k is :

Answer»

`1/4`
`1/3`
`1/6`
`1/2`

ANSWER :B
7470.

If (x_(1),y_(1)) and (x_(2),y_(2)) are ends of focal chord of y^(2)=4ax then x_(1)x_(2)+y_(1)y_(2) =

Answer»

`a^(2)`
`-3 a^(2)`
`5A^(2)`
`-5a^(2)`

ANSWER :B
7471.

Let "c" be the circle with centre at (1,1) and radius =1. If 'T' is the circle centred at (0,y) passing thorugh origin and touching the circle 'C' externally , then the radius of 'T'is equalto:

Answer»

`(SQRT3)/( SQRT2) `
` (sqrt3)/(2)`
` (1)/(2) `
` (1)/(4)`

ANSWER :D
7472.

If x = r cos theta, u = r sin theta then (del theta)/(del x) is:

Answer»

`R `
`(-y)/(X ^(2) +y ^(2))`
`1`
0

Answer :B
7473.

Findthe arealyingabovex-axisand includedbetweenthe circlex^2+y^2 = 8xand insideof theprarabolay^2= 4x .

Answer»


ANSWER :`(4)/(3)(8 + 3 PI)`
7474.

Evaluate the following integrals. int(x)/(x^(2) + 1) dx

Answer»


ANSWER :`(1)/(2)LOG(x^(2)+1)+C`
7475.

If int (1)/( 2 + sin^(2) x )dx = k.tan^(-1) ( l tan x ) + C then (k, l )=

Answer»

`((1)/(sqrt(6)),(1)/(sqrt(3)) ) `
`((1)/(sqrt(6)) , sqrt((2)/(3)) ) `
`((1)/(sqrt(6)) , (2)/(3) ) `
`((1)/(sqrt(6)) , sqrt((3)/(2)) ) `

ANSWER :D
7476.

obtain the equation of hyperbola in each of the following cases: foci at (0,+-sqrt2) and vertices (0,+-1)

Answer»

SOLUTION :
7477.

Differentiate sin (cos (x^2)) with respect to x.

Answer»


Answer :`= -2X SIN x^(2) cos (cos x^(2))`.
7478.

Lines vecr=veca_1+tvecb_1 and vecr=veca_2+svecb_2 are parallel iff:

Answer»

`vecb_1=lambdavecb_2` for some REAL `LAMBDA`
`vecb_2` is PARALLEL to `veca_2-veca_1`
`vecb_1` is parallel to `veca_2-veca_1`
NONE of these

ANSWER :A
7479.

A regular polygon has 20 sides How many triangles can be drawn by using the vertices, but not using the sides?

Answer»


ANSWER :800
7480.

{:(,"Equation of the curve ",,"Nature of the curve "),(I,x=2 (cos t+sin t)y=5(cost-sint )",", ,(a) ("Parabola")),(II,x=3( cosh theta +sin h theta )y=(4cos h theta -sin h theta )",",,(b) ("elipse")),(III,x=sin ^(2) t y=2cos t "," ,,(c) (hyperbola)) :}

Answer»

a,B,C
b,c,a
c,b,a
a,c,b

Answer :B
7481.

Consider, f(x)=(x+2a)(x+a-4)(a in R), g(x)=k(x^(2)+x)+3k+x(k in R) and h(x)=(1-sin theta)x^(2)+2(1-sin theta)x-3 sin theta ( theta in R-(4n+1)(pi)/(2), n in I) If f(x) lt 0 for -1 le x le 1, then 'a' satisfies

Answer»

`1/2 LT a LT3`
`-(1)/(2) lt a lt 1/2`
`-3 lt a lt - (1)/(2)`
`-3 lt a lt 1/2`

ANSWER :A
7482.

Consider, f(x)=(x+2a)(x+a-4)(a in R), g(x)=k(x^(2)+x)+3k+x(k in R) and h(x)=(1-sin theta)x^(2)+2(1-sin theta)x-3 sin theta ( theta in R-(4n+1)(pi)/(2), n in I) If g(x) gt-3 for all real x, then the values of k are given by

Answer»

`-1 LT K lt 1/11`
`-1 lt k lt 0`
`0 lt k lt 1/22`
`k lt 1/11`

ANSWER :D
7483.

In the qualifyingrounds for a race, Rustyand Datedrivetheifcarsaround a 6,000 - footovaltrack. Rustyand Daleeachdrive 8 lapsin thequalifyingroundsin lanesofidenticallength . on dayoneof thequalifyingrounds, RustyandDalestart fromthe samepoint , buttheircarsarereversedandeachdrivesoppositeways, Rustydrivesat a constantspeedthatis 8 feetper secondfasterthandale's constantspeedRustypassesDalefor thefirsttimein 150seconds . Rustydrivesat aconstant rateofhowmanyfeetpersecond ?

Answer»

16
20
24
32

Answer :B
7484.

If [veca, vecb, vec c]=1, then the value of (veca*(vecb xx vec c))/((vec c xx veca)*vecb)+(vecb*(vec cxx vec a))/((veca xx vecb)*vec c)+(vec c*(veca xx vecb))/((vec c xx vecb)*veca) is

Answer»

1
-1
2
3

Solution :N/A
7485.

Consider, f(x)=(x+2a)(x+a-4)(a in R), g(x)=k(x^(2)+x)+3k+x(k in R) and h(x)=(1-sin theta)x^(2)+2(1-sin theta)x-3 sin theta ( theta in R-(4n+1)(pi)/(2), n in I) If the quadratic equation h(x)=0 has both roots complex, then theta belongs to

Answer»

`(-(PI)/(2), (pi)/(2))`
`(0, (3PI)/(2))`
`((pi)/(6), (7pi)/(6))`
`((7pi)/(6), (11pi)/(6))`

ANSWER :D
7486.

If 12 x -4ygt 8 and 2/3 x + 6y ge 14 form a system of inequalities, which of the following graphs shows the solution set for the system ?

Answer»




Solution :Rewrite the inequalities in slope-intercept form. Once complete, determine whether each line shoulb be solid or dashed and which half of the plne (above or below the line) should be shaded for each . The CORRECT graph should have a sashed line with a positive slope `(y lt 3x -2)` and a solid line with a negative slope `(y ge -(1)/(9)x + (7)/(3)),` eliminate (C ) because the dashed and solid LINES are incorrect. According to the INEQUALITY symbols, the half-plane above the solid line and the half-plane below the dashed line should be shaded, the only MATCH is (B).
7487.

A ray of light passes through a prism whose refracting angle is 5^(@) and dispersive power is 0.03. The refractive index for the mean ray in a spectrum is 1.62. The mean deviation and angle of dispersion respectively are

Answer»

`3.1^(@),0.077^(@)`
`3.1^(@),0.093^(@)`
`6.2^(@),0.093^(@)`
`6.2^(@),0.077^(@)`

Solution :`delta_(4)(mu_(4)-1)A=(1.62-1)xx5^(@)`
`=0.62xx5=3.1^(@)`
`theta=delta_(b)-delta_(R)=omegaxxdelta0.03" "5(1.62-1)xx5`
`=0.093^(@)`
7488.

A, B, C, D, E, F in that order, are the vertices of a regular hexagon with centre orgin. If the position vectors of the vertices A and B are respectively, 4hati+3hatj-hatk and -3hati+hatj+hatk, then DE is equal to

Answer»

`7hati+2hatj-2hatk`
`-7hati-2hatj+2hatk`
`3hati-hatj-hatk`
`-4hati-3hatj+2hatk`

SOLUTION :GIVEN, `OA=4hati+3hatj-hatk`
`OB=-3hati+hatj+hatk`
Now, `AB=OB-OA=-7hati-2hatj+2hatk`
`THEREFORE DE=-AB=7hati+2hatj-2hatk`
7489.

The plane 2x – 3y + 6z - 11 = 0 makes an angle sin^(-1)alpha with X- axis. The value of alpha is equal to …............

Answer»

`(SQRT3)/(2)`
`(SQRT2)/(3)`
`2/7`
`3/7`

ANSWER :C
7490.

Verify Lagrange 's mean value theorem for the function f(x) = x+ (1)/(x), 1 le x le 3

Answer»


ANSWER :` C= SQRT3`
7491.

If the curves (x ^(2))/(4) + (y ^(2))/(9) =1 and (x ^(2))/(16) -(y ^(2))/(k)=1 cut each other orthogonally, then k =

Answer»

144
`-9`
25
`-21`

ANSWER :D
7492.

Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(EcapF) = 0.2, find P(E|F) and P(F|E).

Answer»

<P>

ANSWER :`P(E|F)=(2)/(3), P(F|E)=(1)/(3)`
7493.

A line of fixed length (a+b) moves so that its ends are always on two perpendicular straight lines fixed. Prove that a marked point on the line , which divides this line in to portions of lengths a and b describes an ellipse when a=8 , b=12.

Answer»


ANSWER :`sqrt5/3`
7494.

In a box containing 15 identical bulbs, 5 are defective. If 5 bulbs are drawn at random from the box with replacement, find the probability that (i) none is defective (ii) only one of them is defective (iii) atleast one of them is defective

Answer»


Answer :(II) `(50)/(143)` (III) `(131)/(143)`
7495.

9 different pens and 3 different books are distributed randomly to 3 students giving 4 things to each. Find the probability that every student must receive atleast one book.

Answer»


ANSWER :`(16)/(55)`
7496.

The probability distribution of X is (# #TRG_MAT_MCQ_XII_P2_C08_E02_005_Q01.png" width="80%"> Then P(X is odd)=

Answer»

0.45
0.55
0.65
0.75

Answer :B
7497.

Let w(x,y)=xy+(e^(y))/(y^(2)+1) for all (x,y)inRR^(2). Calculate (del^(2)w)/(delydelx)and(del^(2)w)/(delxdely)

Answer»


ANSWER :1
7498.

If A is an invertible matrix of order 2 then find |A^(-1)|

Answer»


ANSWER :`|A^(-1)|= (1)/(|A|)`
7499.

Distance of the point (2,5,-3) from the plane vec r.(6hat i-3 hat j+2 hat k)=4 is

Answer»

4
44381
44390
None of these

Answer :C
7500.

A delegation of four friends is to be selected from a group of 12 friends .The number of ways,the delegationbe selected if two particular friends redused to be together and two other particular friends wish to be together only in the delegation is

Answer»

226
114
156
170

Answer :A