Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

12901.

Let n in N such that n gt 1. Statement-1: int_(oo)^(0) (1)/(1+x^(n))dx=int_(0)^(1) (1)/((1-x^(n))^(1//n))dx Statement-2: int_a^b f(x)dx=int_(a)^(b) f(a+b-x)dx

Answer»

Statement-1 is true, Statement-2 is True,Statement-2 is a correct EXPLANATION for Statement-1.
Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.
Statement-1 is True, Statement-2 is False.
Statement-1 is False, Statement-2 is True.

Solution :Clearly, statement-2 is true (See page 44.17 Property IX).
Putting `X^(N)=tan^(2)THETA`, we get
`I_(1)=underset(0)overset(oo)int (1)/(1+x^(n))DX=(2)/(n)underset(0)overset(pi//2)int tan^((2)/(n)-1)theta d theta`
Putting `x^(n)=sin^(2) theta`, we get
`I_(2)=(2)/(n)underset(0)overset(pi//2)int tan^((2)/(n)-1) theta d theta`
`:. underset(0)overset(oo)int(1)/(1+x^(n))dx=underset(0)overset(1)int(1)/((1-x^(n))^(1//n)dx`
So, statement-1 is also true.
12902.

A=[{:(2,-3),(4,6):}] verify (adjA)^(-1)=(adjA^(-1))

Answer»


ANSWER :`(adjA)^(-1)=(adjA^(-1))`
12903.

random variable X has the range {1,2,3,……….}. If P(X=r)=c^(r//r) for r=1,2,3,……… then c=

Answer»

`E^(2)`
`2^(e)`
`log_(e)2`
`1//2`

ANSWER :C
12904.

A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods X and Y are available at the cost of रु 4 and रु 3 per unit respectively. One unit of the food X contains 200 units of vitamins, 1 unit of minerals and 40 calories, whereas one unit of the food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of X and Y should be used to have least cost, satisfying the requirements.

Answer»


Answer :5 UNIT of X and 30 UNITS of Y Minimum cost = रु 110
12905.

Consider a binary opertion ** on N defined as a **b=a ^(3) +b ^(3). Choose the correct answer.

Answer»

Is `**`both ASSOCIATIVE and COMMUTATIVE ?
Is `**` commutative but not associative ?
Is `**` associative but not commutative ?
Is `**` NEITHER comutative nor associative ?

ANSWER :B
12906.

If (0,6) and (0,3) are respectively the vertex and focus of a parabola then its equation is

Answer»

`x^2 + 12Y = 72`
`x^2 - 12y = 72`
`y^2 - 12X = 72`
`y^2 + 12x = 72`

ANSWER :A
12907.

Let a and b be unit vectors inclined at an angle 2alpha(0lealphalepi) each other, then (a+b) lt 1, if

Answer»

`ALPHA=(pi)/(2)`
`alphalt(pi)/(3)`
`alphagt(2pi)/(3)`
`(pi)/(3)ltalphalt(2pi)/(3)`

Solution :Given , `(a+b)lt 1`
` IMPLIES SQRT(1+12cos 2 alpha )lt 1`
` implies sqrt(2(1+cos 2 alpha ))lt 1`
`implies sqrt(4 cos^(2) alpha )lt 1`
`implies | cosalpha |lt (1)/(2)`
`implies (pi)/(3)lt alpha lt (2pi)/(3) [ :'0 le alpha le pi ]`
12908.

Let A=B B^(T)+C C^(T), where B=[(cos theta), (sintheta)], C=[(sin theta), (-costheta)], theta in R. Then A is :

Answer»

`[(0, 0),(0, 0)]`
`[(0, 1), (1, 0)]`
`[(1, 0), (0,1)]`
`[(0,0),(0, 1)]`

ANSWER :C
12909.

Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is .........

Answer»

`(1)/(18)`
`(5)/(18)`
`(1)/(5)`
`(2)/(5)`

ANSWER :C
12910.

Show that the poles of the tangents to the circle x^(2)+y^(2) = a^(2) with respect to the circle (x+a)^(2)+y^(2)=2a^(2) lie on y^(2) +4ax =0 .

Answer»


ANSWER :` y ^(2) + 4AX =0 `
12911.

If A is symmetric matrix , then B'AB is …….

Answer»


ANSWER :`thereforeB'AB` is SYMMETRIC MATRIX.
12912.

If (tanalpha-i[sin(alpha//2)+cos(alpha//2)])/(1+2isin(alpha//2)) is purely imaginary , is

Answer»

`npi+pi/4`
`npipmpi/2`
`2npipmpi/4`
`2npi+pi/2`

ANSWER :A
12913.

Find a if the coefficients of x^(2) and x^(3) in the expansion of (3 + ax)^(9) are equal.

Answer»


ANSWER :`:. a = 9/7`
12914.

The mass of a molecule of the compound C_(60) H_(122) is :-

Answer»

`1.4 XX 10^(-21) g`
`1.09 xx 10^(-21) g`
`5.025 xx 10^(23) g`
`16.023 xx 10^(23) g`

ANSWER :A
12915.

Let f(x) = [1- x^(2)], x in R, where [] is the greatest integer function. Then

Answer»

F is increasing
x= 0 is the POINT of MAXIMA of f
f is CONTINUOUS at x=0
f is decreasing

Answer :D
12916.

If cot^(-1).(n)/(pi)gt(n)/(6),n in N, then the maximum value of n is :

Answer»

6
7
5
None of these

Solution :`COT^(-1).(n)/(pi) GT(pi)/(6)`
`rArr""(n)/(pi) LT cot.(pi)/(6)`
[as `cot^(-1)x` is a DECREASING function]
`rArr""(n)/(pi) lt sqrt3`
`rArr""n lt sqrt3pi`
`rArr""n lt 5.46`
`rArr"MAXIMUM value of n is 5"`
12917.

Let a , b, c be such that b (a + c) ne0. If|{:(a, a+1, a- 1),(-b, b + 1, b- 1),(c, c -1, c+ 1):}| + |{:(a+ 1 , b+ 1,c -1),(a - 1,b - 1, c+ 1),((- 1)^(n+2)a, (-1)^(n+1)b, (-1)^(n) c):}|= 0, then the value of n is

Answer»

any INTEGER
zero
any EVEN integer
any ODD integer

ANSWER :D
12918.

The projection of point P(vecp) on the plane vecr.vecn=q is (vecs), then

Answer»

`vecs=((q-vecp.vecn)vecn)/(|vecn|^(2))`
`vecs=vecp+((q-vecp.vecn)vecn)/(|vecn|^(2))`
`vecs=vecp-((vecp.vecn)vecn)/(|vecn|^(2))`
`vecs=vecp-((q-vecp.vecn)vecn)/(|vecn|^(2))`

Solution :We have `vecs-vecp=lamdavecnandvecs.n=q.` THUS,
`(lamdavecn+vecp).vecn=q`
or `LAMDA=(q-vecp.vecn)/(|vecn|^(2))`
`impliesvecs=vecp+((vecq-vecp.vecn)vecn)/(|vecn|^(2))`
12919.

int_(0)^(pi) sin (n+(1)/(2))x. " cosec ".(x)/(2) dx=?

Answer»

`(PI)/(2)`
`pi`
`2PI`

ANSWER :C
12920.

OABC is a regular tetrahedron of side unity, then:

Answer»

The length of perpendicular from one vertex to opposite face is `SQRT((2)/(3))`
The perpendicular distance from mid-point of `vec(OA)` to the plane ABC is `(1)/(sqrt6)`
The angle between two skew EDGES is `pi/2`
The distance of centroid of the TETRAHEDRON from any vertex is `sqrt((3)/(8))`

ANSWER :A::B::C::D
12921.

Using integration find the area of the region bounded by the linesy=1+|x+1| ,x=2 ,x=3 and y=0

Answer»


ANSWER :`(27)/( 2)` SQUARE UNITS
12922.

Investigate the following integrals for convergence : (a) int_(0)^(1)(dx)/(sqrt(sinx)), (b) int_(0)^(1)(dx)/(e^(x)-cosx), (c ) int_(0)^(1)(cos^(2)xdx)/((1-x)^(2)), (d) int_(0)^(1)(tanxdx)/(sqrt(1-x^(2))), (e ) int_(1//2)^(6//5)(sinxdx)/(sqrt(|1-x^(2)|)).

Answer»


ANSWER :(a) It CONVERGES;
(b) diverges;
(c ) diverges;
(d) converges;
(E ) converges.
12923.

If the normals drawn to the hyperbola xy = 4 at (alpha_(i), beta_(i)) (i = 1,2,3,4) are concurrentat the point (a, b), then ((alpha_(1) + alpha_(2) + alpha_(3) + alpha_(4)))/((beta_(1) + beta_(2) + beta_(3) + beta_(4)))(alpha_(1)alpha_(2)alpha_(3)alpha_(4)) =

Answer»

`(-16B)/(a)`
`(-16a)/(b)`
`(4B)/(a)`
`(4A)/(b)`

Answer :B
12924.

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =

Answer»

`25( 1 +i)`
`50 (1 - i)`
`100 (1-i)`
0

Answer :B
12925.

Prove that : Find the 4^("th") term from the end in the expansion (2a+5b)^(8).

Answer»


SOLUTION :N/A
12926.

Two dice are rolled. Let A be the event of getting sum 10 and B be the event of getting even on both the dice. Find whether A, B are independent or not.

Answer»


ANSWER :A, B are not INDEPENDENT.
12927.

The orbit of the Earth is an ellipse with eccentricity 1/60with the Sun at one of its foci, the major axis being approximately 186 xx 10^(6) miles in length. Find the shortest and longest distance of the Earth from the Sun.

Answer»


ANSWER :`3145xx10^(4)` MILES
12928.

The root of the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=pi-tan^(-1)7 is

Answer»

`1/2`
1
2
`3/2`

ANSWER :C
12929.

The three sides of a trapezium are each of length 8 cm . Find the maximum area of the trapezium.

Answer»


ANSWER :`48sqrt(3)`SQUARE CM
12930.

A producer has 20 and 10 unit of labour and capital respectively which he can use to produce two kinds of goods X and Y. To produce one unit of x, 2 units of capital and 1 unit of labour is required. To produce one unit of Y,3 of labour and 1 unit of capital is required. If X and Y are priced at Rs. 80 and Rs. 100 per unit respectively, howshould the producer use his resources to maximise the total revenue?

Answer»


ANSWER :At 25 km/h he should TRAVEL 50/3, at 40 km/h 40/3 km. Maximum distance 30 km in 1 hr.
12931.

The vectors of two sides of the triangle are vec(a)=3hati+6hatj-2hatk and vec(b)=4hati-hatj+3hatk then find all the angles of the triangle.

Answer»


Answer :`COS^(-1)((7)/(sqrt(75))),cos^(-1)((sqrt(26))/(sqrt(75))),90^(@)`
12932.

Two braches of a hyperbola

Answer»

have a COMMON tangent
have a common normal
do not have a common tangent
do not have a common normal

Answer :B::C
12933.

Evaluate : int_((2x)/(1+x^(2)))dx

Answer»
12934.

If alpha, beta are the roots of the equation x^(2)+x+1=0, then the equation whose roots are alpha^(22)" and "beta^(19), is

Answer»

A. `X^(2)-x+1=0`
B. `x^(2)+x+1=0`
C. `x^(2)+x-1=0`
D. `x^(2)-x-1=0`

ANSWER :B
12935.

tan{ilog((a-ib)/(a+ib))}=

Answer»


ANSWER :`=(2b//a)/(1-(b/a)^2)=(2AB)/(a^2-b^2)`
12936.

A and B are two students. Their chances of solving a problem correctly are (1)/(3) and (1)/(4),respectively. If the probability of their making a common error is (1)/(20)and they obtain the same answer, then the probability of their answer to be correct is ..........

Answer»

`(1)/(12)`
`(1)/(40)`
`(13)/(120)`
`(10)/(13)`

Answer :D
12937.

If sin ^(-1) .(2a)/(1+a^(2))+ cosec^(2) (cot ^(-1) 3)=?

Answer»

`(a+b)/(1-ab)`
`(a+b)/(1+ab)`
`(a-b)/(1+ab)`
NONEOF these

Answer :A
12938.

A,B are conjugate points w.r.t circle having centre O radius r then OA^(2)+OB^(2)-2r^(2)=AB^(2)

Answer»


ANSWER :`AB^(2)`
12939.

Let vec(a), vec(b), vec(c) be three vectors in the xyz space such that vec(a)xxvec(b)=vec(b)xxvec(c)=vec(c)xx vec(a) ne 0 If A, B, C are points with position vector vec(a), vec(b), vec(c) respectively, then the number of possible position of the centroid of triangle ABC is -

Answer»

1
2
3
6

Solution :`vec(a)xxvec(B)+vec(c)xxvec(b)=0` similarly `vec(b)+vec(c)=lambda_(2) vec(a)`
`vec(a)+vec(c)=lambda_(1)vec(b)""vec(b)+vec(a)=lambda_(3)vec(c)`
12940.

If X={8^(n)-7n-1:ninN}andY={49(n-1):ninN}, then

Answer»

`XsubY`
`YsubX`
`X=Y`
`XnnY=phi`

ANSWER :A
12941.

Statement -1 : Ifx in R, x ne 0 , then x^2 + 1/(x^(2)) cannot be equal to cos theta for any theta Statement -2 : Sum of a positive number and its reciprocal cannot be less than 2.

Answer»

Statement-1 is TRUE, Statement-2 is True and Statement-2 is a CORRECT EXPLANATION for Statement-1.
Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation forStatement-1.
Statement-1 is True, Statement-2 is FALSE
Statement-1 is False, Statement-2 is True

Answer :A
12942.

Let alpha, beta be two distinct values of x lying in (0,pi) for which sqrt5 sin x, 10 sin x, 10 (4 sin ^(2) x+1) are 3 consecutive terms of a G.P. Then minimum value of |alpha - beta|=

Answer»

`pi/10`
`pi/5`
`(2PI)/(5)`
`(3PI)/(5 )`

ANSWER :B
12943.

Compute the integral I_(m,n) = int_(0)^(1) x^(m) (! - x)^(n)dx , where m and n are non-negative integers.

Answer»


ANSWER :`I_(m,N) = (m!n!)/((m + n + 1)!)`
12944.

The variance of first 10 multiples of 3 is

Answer»

64.25
54.25
70.25
74.25

Answer :D
12945.

Let the sum of all divisiors of the form2^(p)*3^(q) (with p, q positive integers) of the number 19^(88)-1 be lambda. Find the unit digit of lambda.

Answer»


ANSWER :`(4)`
12946.

STATEMENT-1 :Ifx is positive , then least value ofx^(12) + (4)/(x^(2)) + (4)/(x)is 9. STATEMENT-2 :Ifa^(2) + b^(2) + c^(2) = 4 , x^(2) + y^(2) + z^(2) = 9then maximum value ofax + by + czis 6 STATEMENT-3 :2 + (3)/(2^(2)) + (4)/(2^(3)) + ......"upto" oo = 4.

Answer»

F T F
T T F
T T T
F F T

ANSWER :3
12947.

Q is a point on the auxiliary circle corresponding to the point P of the ellipse x^2/a^2 + y^2/b^2 =1 If T is the foot of the perpendicular dropped from the focus S onto the tangent to the auxiliary circle at Q then the Delta SPT is

Answer»

isosceles
equilateral
right angled
right isosceles

Answer :A
12948.

Differentiate w.r.t x the function sin^(3) x + cos^(6)x

Answer»


ANSWER :`3 sin X COS x (sin x-2 cos^(4) x)`
12949.

Point of concurrence of the normals drawn at (2,8) , (128,64) , (162, -72)to the parabola y^(2)=32 xis

Answer»

A) (`2,8) `
B) ` (128, 64) `
C) ` ( 162, -72) `
D) ` ( 162, 72) `

ANSWER :C
12950.

If z is a complex number such that z = ln(a – 1) + iln (b – 1) then arg(z) is :

Answer»

`PI/4`
`(3PI)/4`
`(-pi)/4`
`(-3pi)/4`

ANSWER :C