InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1451. |
If the lines x - y - 1 = 0, 4x + 3y = k and 2x – 3y +1 = 0 are concurrent, then k is |
|
Answer» 1 |
|
| 1452. |
I : The locus of the midpoint of chords of the parabola y^(2)=4ax which subtends a right angle at the vetex is y^(2)=2a (x-4a) II : The locus of midpoint of chords of the parabola y^(2)=4ax which touch the circle x^(2)+y^(2)=a^(2) is (y^(2)-2ax)^(2)=a^(2)(y^(2)+4a^(2)) . |
|
Answer» only I is TRUE |
|
| 1453. |
What can you say about the set, A,B,if A uu B = phi |
| Answer» SOLUTION :If `A UU B =PHI IMPLIES then A =phi =B` | |
| 1454. |
Using differentials, find the approzimate value of each of the following up to 3 places of decimal :(82)^((1)/(4)) |
|
Answer» |
|
| 1456. |
Two cards are drawn at random . Without replacement from a pack of 52 playing cards. Find the probability that both the cards are black. |
|
Answer» <P> Solution :Let A be the event that the card DRAWN first is a black card and B be the event that the card drawn SECOND is a black card.therefore P(B/A)=25/51 HENCE, the required probability |
|
| 1457. |
Select the one which does not results in the formation of aromatic species . |
|
Answer»
|
|
| 1458. |
If x+2y ge 10, 3x+4y le 24, x ge 0, y ge 0 then the minimum value of f=200x+500y is |
|
Answer» 2300 |
|
| 1459. |
Find the mean deviation about median for the following data |
|
Answer» |
|
| 1460. |
Match the principal values ofcos^(-1) ( 8 x^(4) - 8 x^(2) + 1) given in column I withthe corresponding intervals of x givenin column II . For which it holds . {:(,"Column I",,"Column II"),(A,4 cos^(-1) x,p.,0 le x le 1/sqrt2),(B,4 cos^(-1)x - 2 pi,q.,1/sqrt2 le x le 1),(C,2pi - 4 cos^(-1)x,r.,-1le x le - 1/sqrt2),(D,4pi - 4 cos^(-1) x,s.,-1/sqrt2 le x le 0):} |
|
Answer» |
|
| 1461. |
If the latus rectum of a hyperbola subtend an angle of 60A^(@) at the other focus, then eccentricity of the hyperbola is |
|
Answer» 2 |
|
| 1462. |
Consider the lines L:(k+7)x-(k-1)y-(k-5)=0 where k is a parameter and the circle C:x^(2)+y^(2)+4x12y-60=0 Statement-1: Every member of L inttersects the circle 'C" at an angle of90^(@) Statement-2: Every member of L is tangent to the circle C. |
|
Answer» Statement-1 is TRUE, statement-2 is true, and statement-2 is CORRECT explanation for statement-1 . `-2(k+7)+6(k-1)-4(k-5)=(-2k+6k-4k)-14-6+20` Hence EVERY member of L passing through the centre of the circle`""IMPLIES""`cuts it at `90^(@)`. Hence S-1 is true and S-2 is false. |
|
| 1463. |
Solve the equation |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=0. (ane0) |
|
Answer» |
|
| 1465. |
If alpha and beta are the coefficients of x^(8) and x^(-24) respectively, in the expansion of (x^(4) + 2 + (1)/( x^(4))) in powers of x, then (alpha)/(beta) is equal to : |
| Answer» Answer :B | |
| 1466. |
If sinA=(2)/(sqrt(5))andcosB=(1)/(sqrt(10)) where A and B are acute angles , then what is A +B equal to ? |
|
Answer» `135^(@)` ![]() `thereforecosA=(1)/(sqrt(5))sinB=(3)/(sqrt(10))` `thereforesin(A+B)=sincosB+cosAsinB` `=((2)/(sqrt(15)))((1)/(sqrt(10)))+((1)/(sqrt(5)))((3)/(sqrt(10)))` `=(2)/(sqrt(50))+(3)/(sqrt(50))=(5)/(sqrt(50))=(5)/(sqrt(25xx2))=(5)/(5sqrt(2))=(1)/(sqrt(2))` `sin(A+B)=(1)/(sqrt(2))rArrsin(90+45)=(1)/(sqrt(2))` `(becausesin(90+45)=cos45^(@))` `thereforeA=90^(@)andB=45^(@)` `thereforeA+B=90^(@)+45^(@)=135^(@)` |
|
| 1467. |
If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is |
|
Answer» SOLUTION :`(a-b)^(2) + (b-c)^(2) + (c-a)^(2)` `= 2(a+bomega+ comega^(2)) (a+bomega^(2) + comega)` `= 2` |
|
| 1469. |
The tangents to the curve y = (x - 2)^(2) - 1 at its points of intersectio with the line x - y = 3, intersect at the point |
|
Answer» `((5)/(2), 1)` `y = (x - 2)^(2) - 1` `implies y = x^(2) - 4X + 3` Now, let `(x_(1) y_(1))` be the print of intersection of TANGENTS of parabola (i) and line x - y = 3, then Equation of CHORD of contact of point `(x_(1), y_(1))` w.r.t parabola (i) is `T = 0` `implies (1)/(2) (y + y_(1) = xx_(1) - 2 (x + x_(1)) + 3` `implies y + y_(2) = 2x (x_(1) - 2) - 4x_(1) + 6` `implies 2x (x_(1) - 2) - y = 4 x_(1) + y_(1) - 6`, this equation represent the line x - y = 3 only, so on comparing, we get `*(2(x_(1) - 2))/(1) = (-1)/(-1) = (4x_(1) + y_(1) - 6) ` `implies x_(1) = (5)/(2)` and `y_(1) = 1` So, the REQUIRED point is `((5)/(2), - 1)` |
|
| 1470. |
""^(2n)C_(n+1)+2. ""^(2n)C_(n) + ""^(2n) C_(n-1) = |
|
Answer» `""^((2n+2))C_(N+1)` |
|
| 1471. |
Which one of the following viscera accommodates a largest blood volume at rest ? |
|
Answer» SPLEEN |
|
| 1472. |
If underset(r=0)overset(21)sum f((r)/(11)+2x)= constant AA x in R and f (x) is periodic, then period of f (x) is: |
|
Answer» 1 |
|
| 1473. |
I : The coefficient of x^24 in (1+3x+6x^2 + 10x^3 +....oo)^(2//3) is 25. II : The coefficient ofx^7 in (1+2x+3x^2 + 4x^2 + …..oo)^(-3) is 3 |
|
Answer» only I is true |
|
| 1474. |
The radius of the circle passing throgh the foci of the ellipse (x^2)/16 + (y^2)/9 = 1 and haivng centre (0,3) is |
| Answer» ANSWER :A | |
| 1475. |
Consider the letters of the word MATHEMATICS. Set of repeating letters = {M, A, T}, set of non repeating letters = {H, E, I, C, S} : |
|
Answer» <P> |
|
| 1476. |
Integrate the functions 1/(sqrt(ax-x^(2))) |
| Answer» | |
| 1477. |
Given I_(m) = int_(1)^(e ) (log x)^(m) dx. If (I_m)/( K) + (l_(m-2) )/(L) =e then values of K and L are |
|
Answer» `1- m, (1)/( m)` |
|
| 1478. |
Let A be the sum of the digits of the number (4444)^(4444)and B be the sum of the digits of the number A. Find the sum of the digits of the number B. |
|
Answer» |
|
| 1479. |
Show that y=log(1+x)-(2x)/(2+x), x gt -1, is an increasing function of x throughout its domain. |
|
Answer» |
|
| 1480. |
If a, b and c are the three vectors mutually perpendicular to each other to form a right handed system and |a|=1, |b|=3 and |c|=5, then [a-2b b-3c c-4a] is equal to |
|
Answer» SOLUTION :GIVEN that, `|a|=1, |b|=3` and `|c|=5` `:. [(a-2b,b-3c,c-4a)]` `=(a-2b).{(b-3c)XX(c-4a)}` `=(a-2b). {bxxc-4bxx+12 xx}` `=(a-2b).(a+4c+12b)` `=a.a-24b.b=1-24xx9` `=1-216=-215` |
|
| 1481. |
If veca = (2,1), vecb = (-1,0), find 3veca + 2vecb. |
|
Answer» SOLUTION :`3veca+2vecb` = 3(2,1) + 2(-1,0) (6-2, 3+0) = (4, 3) |
|
| 1482. |
Ifx=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t)),a gt 0and -1 lt t lt 1. show that (dy)/(dx)=-(y)/(x), |
|
Answer» |
|
| 1483. |
If y = (1+x)(1+x^(2))(1+x^(4)), then (dy)/(dx) at x = 1 is |
|
Answer» 20 |
|
| 1484. |
int_(0)^(5)sqrt(25-x^(2))dx=............. |
|
Answer» `(25pi)/(4)` |
|
| 1486. |
If 1, -2, 3 are the roots of ax^(3) + bx^(2) + cx + d = 0 then the roots of ax^(3) + 3bx^(2) + 9cx + 27d = 0are |
|
Answer» `2,4,6` |
|
| 1487. |
Find the locus of the third vertex of a right angled triangle , the ends of whose hypotenuse are (4,0) and (0,4) |
|
Answer» |
|
| 1488. |
Show that the circles x^(2)+y^(2)-2x=0 and x^(2)+y^(2)+6x-6y+2=0 touch each other. Find the coordinates of the point of contact. Is the point of contact external of internal? |
|
Answer» |
|
| 1489. |
If z is a complex number such that |z| = 2 , find the maximum and minimum value of |z - 2 + 3i| |
|
Answer» |
|
| 1490. |
If alpha , beta , gamma are the roots of x^(3) + qx + r = 0 then the equation whose roots (beta)/(gamma) + (gamma)/(beta) , (gamma)/(alpha) + (alpha)/(beta), (alpha)/(beta) + (beta)/(alpha)is |
|
Answer» `x^(3) - q^(2) - x^(2) - 2qr^(2) x - R^(4) = 0 ` |
|
| 1491. |
If a, b, x, y in R, omega ne 1, is a cube root of unity and (a + b omega)^(7) = x + y omega, then (b + a omega)^(7) equals |
|
Answer» `y + X OMEGA` |
|
| 1492. |
Differentiate.sinx.w.r.t.cotx |
|
Answer» Solution :Lety=sin XAND `z = COT X. dy/dx=cos x `and `dz/dx=-cosec^2x` `dy/dz=(dy/dx)/(dz/dx)=(COSX)/-(cosec^2x)=-cosxsin^2x` |
|
| 1493. |
Find the equation of the circum circle of the triangle formed by the linesx- y -2=0, 2x - 3y + 4=0, 3x - y + 6 =0 |
|
Answer» |
|
| 1494. |
A circle passes through origin and has its centre on y = x. If it cuts x^2+y^2-4x-6y+10=0orthogonally then the equation of the circle is |
|
Answer» `x^2+y^2-x-y=0` |
|
| 1495. |
Let (hatp xx vecq) xx (hatp.vecq)vecq =(x^(2)+y^(2))vecq + (14-4x-6y)vecp Where hatp and hatq are two non-collinear vectors vecp is unit vector and x,y are scalars. Then the value of (x+y) is |
|
Answer» 4 `rArr (hatp.hatp)vecq+(1-4x-6y)hatp` Since `hatp` and `vecq` are non-zero non-collinear. We can COMPARE coefficients of vectors `hatp` and `hatq`. `therefore 1+hatp.vecq=x^(2)+y^(2)`.............(i) And `hatp.vecq=4x+6y-14`............(II) From (i) and (ii), we get `rArr x^(2) + y^(2)-4x-6y+13=0` `rArr (x-2)^(2)+(y-3)^(2)=0` x=2 and y=3 |
|
| 1497. |
By what percent did the number of school with Pupil/Teacher ratio less than 16 increase in January 1999 over January 1998? |
| Answer» ANSWER :D | |
| 1498. |
If f(y)=f(x^(2)+2) and f'(3)=5, then (dy)/(dx) at x=1 is : |
|
Answer» 10 |
|
| 1499. |
The point of concurrence of all conjugate lines of the line 5x + 7y - 78 = 0 with respect to the circle x^(2) + y^(2) + 6x + 8y - 96 = 0is |
| Answer» ANSWER :D | |
| 1500. |
If OT is the semi- minor axisof an ellipse A and B are its foci andangle ATB is right angle , then the eccentricity of that ellipse is |
|
Answer» 1 |
|