 
                 
                InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 2601. | int (5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx= | 
| Answer» `(x^(5))/(2x^(7)+x^(2)+1)+c`  | |
| 2602. | P(theta ) and Q( phi )are two point onx^(2)//a^(2) -y^(2)//b^(2) =1such thattheta - phi = 2alpha .PQtouches the conic | 
| Answer» ` (x^(2) cos ^(2) ALPHA )/( a^(2)) -(y^(2))/( B^(2)) =1`  | |
| 2603. | C is the centre, AA' and BB' are major and minor axis of the ellipse. x^2/a^2+y^2/b^2=1. If PN is the ordinate f a point P on the ellipse then show that (PN)^2/((A'N)(AN))=(BC)^2/(CA)^2 | 
| Answer» | |
| 2604. | Find x , if [x-5-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=O. | 
| Answer» | |
| 2605. | By using elementary operations , find the inverse of the matrix A=[{:(1,2),(2,-1):}] | 
| Answer» | |
| 2606. | From the following data, find () regression coefficients (ii) regression equations. | 
| Answer» (II) Regressionequation of y or x : y= 0.74 x - 0. 5 Regression equation of x or y : x = 1.33y + 0. 72 | |
| 2607. | If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x + ….. + C_(n) x^(n) then show that the sum of the products of the C_(i) is taken two at a time represented by sum sum C_(i) C_(j) is equal to 0 le I lt j n 2^(2n - 1) - ((2n!))/(2(n!)^(2)). | 
| Answer» Solution :We know that , `2SUM _(0) sum_(leile j lt n)sum C_i C_j=sum_(i=0)^(n)sum_(j=0)^(n)C_(i=0)^(n)sum_(j=0)^(n)C_i C_J- sum_(i=0)^(n)sum_(j=0)^(n)C_i C_j =sum_(i=0)^(n)C_i sum_(j=0)^(n)C_(j) -sum_(i=0)^(n)C_(i)^(2)` `=2^n 2^n -(.^2n C_n)=2^2n -.^2n C_n` `therefore sum sum_(0 LE i n j le n) C_iC_j=(2^2n -.^2n C_N)/(2)=2^(2n-1)-((2n)!)/(2(n!))`. | |
| 2608. | If bar(x)_(1) and bar(x)_(2) are the means of two distribution such that bar(x_(1)) lt bar(x_(2)), bar(x) is mean of the combined distribution then | 
| Answer» `BAR(X) lt bar(x_(1))` | |
| 2610. | If the asymptotes of the hyperbolaperpendicular to the asymptotes of the hyperbola(x^(2))/(49)-(y^(2))/(b^(2))=1 then | 
| Answer» Answer :a | |
| 2611. | Solve[x sin^(2)((y)/(x)) - y] dx + x dy = 0, | 
| Answer» | |
| 2612. | Find the coordinates of the point at unit distance from the lines 3x-4y + 1 = 0, 8x +6y +1 = 0 | 
| Answer» | |
| 2613. | If p, q and r are perpendicular to q + r, r + p and p + q respectively and if |p + q| = 6, |q + r| = 4sqrt(3) and |r + p| = 4, then |p + q + r| is | 
| Answer» `5sqrt(2)` `implies p^(2) +q^(2)+2p.q=36` Similarly `q^(2)+r^(2)+2q.r=48` ` andr^(2) +p^(2)+2r .p =16` Addingall weget `2( p^(2)+q^(2)r^(2)+p.q+q.r+r.p)=36+48+16` `implies 2(p^(2)+q^(2)+r^(2))=100` `[ :'p.q+q.r+r.p=0]` `implies p^(2)+q^(2)+r^(2)=50` `=|p+q+r|^(2)=50` `implies |p+q+r|=5sqrt(2)` | |
| 2614. | if x^(2)+3x+2 lt 0 and f(x)=x^(2)-3x+2, then | 
| Answer» `0 lt f(x) lt 6` | |
| 2615. | Lt_(n rarr oo)(1)/(n)[e^((1)/(n))+e^((2)/(n))+....+e^((n)/(2))] | 
| Answer» | |
| 2616. | Let alphaand betaare roots x^(2) - 7 . 32 x - 3 =0 and let A_(n) = alpha_(n) + beta_(n), "then " (A_(36) - 3 A_(35))/( A_(36)) isequal to _________ | 
| Answer» | |
| 2617. | If int(1)/((e^(x)-1)^(2))dx=f(x)-log|g(x)|+c, then : | 
| Answer» `D_(F)=R`  | |
| 2618. | A tangent is drawn to the ellipse(x^(2))/( 27 ) +y^(2) =1 at the point (3sqrt3 cos theta, sin theta) "where"0 lt theta lt (pi )/(2)then the sum of the intercepts of the tangent with the coordinate axes is least when theta = | 
| Answer» Answer :A | |
| 2619. | Find the centre, eccentricity, foci directrices and the length of the latus rectum of the following hyperbolas(i) 4x^(2) - 9y^(2) - 8x - 32 = 0 (ii)4(y + 3)^(2) + 9(x - 2)^(2) = 1 | 
| Answer» | |
| 2620. | Let S and S' be the two foci of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 if the circle described on SS' as diameter: to ches the ellipse in real point, then find the eccentricity of the ellipse. | 
| Answer» | |
| 2621. | Let A=[[1,2,3,4,1], [4,5,6,1,2], [3,9,1,1,6]]What is the order of A? | 
| Answer» SOLUTION :ORDER of A is `(3xx5)` | |
| 2622. | Show that the number of ways to select 'r' objects from ndistinct objects which are arranged along a row so that no two of the selected objects are consecutive is ""^((n-r+1))C_r," where "ge2r-1 | 
| Answer» | |
| 2623. | Evaluate int(a tan x - b cot x)^(2) dx | 
| Answer» | |
| 2624. | If z= x+iy , z^(1//3) = a- ib and (x)/(a) - (y)/(b) = lambda (a^(y)-b^(y) ), then lambda is equal to | 
| Answer» 1 | |
| 2625. | Two persons A and B stand in a row with 10 other persons. What is the probability that three are exactly two persons between A and B. | 
| Answer» | |
| 2626. | int (dx)/(cos x - sin x )= | 
| Answer» `(1)/(SQRT(2)) log | tan ((X)/(2) - (pi)/(8))| +C ` | |
| 2627. | Two dice are thrown simultaneously. The events A, B, C, D are described as follows: A = Getting an even number on the first die B = Getting an odd number on the first die C = Getting atmost 5 as sum of the numbers on the two dice D = Getting the sum of the numbers on the dice greater than 5 but less than 10 Which of the following statements is true? | 
| Answer» A and D are MUTUALLY exclusive | |
| 2628. | If the sine of the angles of DeltaABC satisfy the equation c^(3)x^(3)-c^(2) (a+b+c)x^(2)+lx +m=0 (where a,b,c are the sides of DeltaABC), then DeltaABC is | 
| Answer» ALWAYS right angled for any L, m  | |
| 2630. | Let f(x)=x^(2)+4x+1. Then | 
| Answer» `f(X) gt 0` for all x  | |
| 2631. | Let A=[[1,2,3,4,1], [4,5,6,1,2], [3,9,1,1,6]]Write down A^T. | 
| Answer» SOLUTION :`A^T=[[1,4,3],[2,5,9],[3,6,1],[4,1,1],[1,2,6]]` | |
| 2632. | Three vectors veca,vecbandvecc satisfy the condition veca+vecb+vecc=vec0 . Evaluate the quantity mu=veca*vecb+vecb*vecc+vecc*veca,if |veca|=3,|vecb|=4and|vecc|=2. | 
| Answer» | |
| 2633. | Evaluate the following integrals intxlog(1+x)dx | 
| Answer» | |
| 2634. | If the third term in the expansion of ((1)/(x)+x^(log_10 x) x)^5 is 1000, then x= | 
| Answer» 100 | |
| 2635. | Evalute the following integrals int (1)/((1 + sqrt(x)) sqrt(x - x^(2)) )dx on (0,1) | 
| Answer» | |
| 2636. | Angle between tangents drawn at ends of focal chord of parabola y^(2) = 4ax is | 
| Answer» Answer :A | |
| 2637. | Ifonerootof x^3- 12x^2 +kx -18=0is thricethe sumof remainingtworootsthenk= | 
| Answer» ANSWER :A | |
| 2638. | Show that semi - vertical angle of right circular cone of given surface area and maximum volume is sin^(-1)((1)/(3)). | 
| Answer» | |
| 2639. | If 'c' is small in comparison with l then ((l)/(l+c))^(1//2) + ((l)/(l-c))^(1//2)= | 
| Answer» `2 + (3c)/(4L)`  | |
| 2640. | p : sqrt(39) is irrational To check the validity of statement p , which of the following method we can use | 
| Answer» DIRECT method  | |
| 2641. | If the expansion (4a - 8x)^(1//2) were to possible then | 
| Answer» `2LT |a/x|`  | |
| 2642. | Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E cap F) = 0.2, find P(E|F) and P(F|E). | 
| Answer» <P> | |
| 2643. | (sqrt(2)-1)/(sqrt(2))+(3-2sqrt(2))/(4)+(5sqrt(2)-7)/(6sqrt(2))+……oo= | 
| Answer» log 2  | |
| 2644. | Form the differential equation by eliminating a, b from y = ae^(3x) + be^(4x) | 
| Answer» `(d^(2)y)/(DX^(2)) + 7 (dy)/(dx) + 12Y = 0`  | |
| 2646. | if underset(r=1)overset(m)Sigma(r^(2)+1)r! =100xx101! then m equals | 
| Answer» 100 | |
| 2647. | Which of the following equation (s) is/ are linear? | 
| Answer» `dy/dx + y /X = LOG x`  | |
| 2648. | If A,B,C are the angles of a triangle, then the value of cot.(A)/(2)+cot.(B)/(2)+cot.(C )/(2) is | 
| Answer» `(R)/(s)` | |
| 2649. | int (dx)/( e^(x) + e^(-x) +2) is equal to | 
| Answer» `(1)/( E^(X) +1) +C` | |