InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 3852. |
The number of vectors of units length perpendicular to both the vectors hati +2hatj - hatkand2hati + 4hatj -2hatkis |
|
Answer» 2 |
|
| 3853. |
Evaluate the integerals.int e ^(x) ((1+ x log x)/(x)) dx on (0,oo). |
|
Answer» `(E^(X) - log x)/(x) + C` |
|
| 3854. |
Find the number of 9 digit natural numbers in which each digit appears at least thrice. |
|
Answer» |
|
| 3855. |
Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k) |
|
Answer» |
|
| 3856. |
Form the differential equation from y = Ae^(3x) +Be^(-2x). |
|
Answer» |
|
| 3857. |
Draw the graph of y = cos pix. |
|
Answer» Solution :We have `y = F(X) = cospix` PERIOD of function is `(2pi)/(pi) = 2.` therefore, the graph of the function is as SHOWN in the FOLLOWING figure.
|
|
| 3858. |
If the area of the region bounded by the curves y=x =x^(2)and x = y^(2)is k then the area of the region bounded by the curves (x+sqrt(3y))/(2)=(sqrt(3x)-y^(2))/(2) and (sqrt(3x)-y)/(2)=(x+sqrt(3y))^(2)/(2) is |
|
Answer» `(sqrt(3))/(2 ) K` |
|
| 3859. |
If (sinalpha)x^(2)-2x+bge2 for all real values of x le 1 andalpha in(0,(pi)/(2))cup((pi)/(2),pi), then the possible real values of b is/are |
|
Answer» 2 |
|
| 3860. |
If int(x^(3))/(4+x^(16))dx=(A)/(8)tan^(-1)(z)/(sqrt(2))-(1)/(64)log |(u-sqrt(2))/(u+sqrt(2))|+C , where u = y + 1/y and z = y - 1/y = x^(4) // sqrt(2) then A is equal to. |
|
Answer» |
|
| 3861. |
Find the equation of the circle which touches the circle x^(2) + y^(2) - 2x - 4y - 20 = 0 externally at (5, 5) with radius 5. |
|
Answer» |
|
| 3862. |
If |bar(a)|=10,|bar(b)|=2 and bar(a).bar(b)=12 then the value of |bar(a)xx bar(b)| is ………… |
|
Answer» 5 |
|
| 3863. |
Find the equation of the circle passing through the point (4,1) and (6,5) and whose centre is on the line 4x + y = 16. |
|
Answer» |
|
| 3864. |
A particle moves so that the distance moved is according to the law s(t)=(t^(3))/(3)-t^(2)+3. At what time the velocity and acceleration are zero respectively ? |
| Answer» ANSWER :A | |
| 3865. |
Find the 2xx2 mtrix X Given [x y z ]-[-4 3 1] =[-5 1 0] derermine x,y,z. |
|
Answer» Solution :` [X y Z ]-[-4 3 1] =[-5 1 0]` `:.(x y z) =(-431)+( -510)=( -94 1 )` `:.` x=-9,y=4,z=1 |
|
| 3866. |
Let p:7 is not greater than 4 and q: Paris is in France be two statements. The ~(pvvq) is the statement |
|
Answer» 7 is GREATER than 4 or PARIS is not in FRANCE |
|
| 3867. |
Discuss the applicability of Rolle's theorem for the function f(x)={{:(x^(2)-4",",x le1),(5x-8"," , x gt1):} |
|
Answer» |
|
| 3868. |
Find the area bounded by the curves 4 y = |4-x^(2)|, y = 7 - |x| |
|
Answer» |
|
| 3869. |
Show that int_(0)^(n pi + alpha) |sin x|dx = (2n+1) - cos alpha where n in N and 0 le alpha le pi |
|
Answer» |
|
| 3870. |
If (2i + 4j + 2k) xx (2i - xj + 5k) = 16i - 6j + 2xk, then the value of x is |
|
Answer» 2 |
|
| 3871. |
The solution of (dy)/(dx) = (4x+9y+1)^(2) is |
|
Answer» `3(4x+9y+1) = TAN(6x+C)` |
|
| 3872. |
Integrate the function is Exercise. (1)/(x-x^(3)) |
|
Answer» |
|
| 3873. |
If omega is a complex cube root of unity, then the value of sin{(omega^(10)+omega^(23))pi- (pi)/(6)} is |
|
Answer» `(1)/(SQRT(2))` |
|
| 3874. |
Find the number of ways of arranging the letters of the word a^(4)b^(3)c^(5) in its expanded form. |
|
Answer» |
|
| 3875. |
If int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx =(gof)(x)+c then |
|
Answer» `F(X)=LOG(x+sqrt(x^(2)+1))and g(x)=k` |
|
| 3876. |
if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}],thenshowthat (i) AB=A and BA=B. |
| Answer» SOLUTION :N/a | |
| 3877. |
Find the vector equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines : (x-8)/(3)=(y+19)/(-16)=(z-10)/(7) and (x-15)/(3)=(y-29)/(8)=(z-5)/(-5). |
|
Answer» |
|
| 3878. |
MaximizeZ=8x+9y, subject to the contraints given below: 2x+3y le 6, 3x-2y le 6, y le 1, x,y ge 0 |
|
Answer» |
|
| 3879. |
If the sum of two unit vectors is a unit vector, then the magnitude of their diffierence is |
|
Answer» `sqrt2` Also, `|hata|=|hatb|=|hata+hatb| =1` So, `Delta OAB` is an equilateral triangle. `therefore |OA|=|hata| = 1= |-hatb|= |AB'|` THUS, `Delta OAB' ` is an isosceles triangle. `angle AB' O= angleAOB'=30^(@)` `and angle BOB' = angleBOA+angleAOB' = 90^(@)` `therefore " In " DeltaBOB', |B B'|^(2)=|OB|^(2)+|OB' |^(2)` `rArr 2^(2) = |hata + hatb|^(2) + |hata-hatb|^(2)` `rArr |hata - hatb|=SQRT(4-1)=sqrt(3)` |
|
| 3880. |
Evaluate int_(-1)^(1) f(x)dx, where f(x) = {:(1,2x, x le 0),(1+2x, x ge 0):} |
|
Answer» 0 |
|
| 3881. |
If (i^(4)+i^(9)+i^(16))/(2-i^(8)+i^(10)+i^(3))=a +ib, then (a,b) is |
|
Answer» `(1,2)` |
|
| 3882. |
Evaluate the following integrals int(x^(2)-1)/(x^(4)+1)dx |
|
Answer» |
|
| 3883. |
Differentiate the functions given in Exercises 1 to 11 w.r.t. x. x^(x)-2^(sin x). |
|
Answer» |
|
| 3884. |
Find the number of integral solutions of x+y+z+t=29 where xge1,yge1,zge3 and tge0 |
|
Answer» |
|
| 3885. |
let k gt 0 , s_alpha -= x^2 + y^2 + 2alpha x + k= 0 " and "s_beta -= x^2 + y^2 + 2 beta y - k= 0 . Then match the items of List -I with those of List - II The correct match is |
|
Answer» `A to (III), B to (IV) , C to (ii) , D to (i)` |
|
| 3886. |
Let P be a poointon the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb) in the first or second quadrants whowse foci are S_(1)and S_(2). Then the least possible value of circumradius of DeltaPS_(1)S_(2) will be |
|
Answer» <P> ae `R=("Product of all sides")/(4xx"Area of triangle")`ltbr Consider point `P(a cos theta, b SIN thea)` on the ELLIPSE. `:.` Circumrdius , `R=(a(1-ecostheta)xxa(1+ecostheta)xx2ae)/(4xx(1)/(2)b sin thetaxx2ae)` `=(a^(2)(1-e^(2)cos^(2)theta))/(2b sin theta)` `=(a^(2)(1-e^(2)(1-sin^(2)theta)))/(2b sin theta)` `=(a^(2))/(2)(e^(2)sintheta+(b^(2))/(a^(2))"cosec"theta)` `GE(a^(2))/(2b)xx(2be)/(a)ae` `:.R_("min")=(a^(2))/(2b)xx(2be)/(a)=ae` |
|
| 3887. |
Number of ways of arranging 12 boys and 12 girls are as follows: a_(1)= a line such that boys and girls sit alternatively. a_(2)= around a circular table alternatively. a_(3)= around an equilateral triangular table alternatively and eight on each side. a_(4)=around a square table alternatively and six on each side. (For a_(3) and a_(4) on a corner if on one side, it's a boy then on the other side it should be a girl to maintain alternation). which of the following is true? |
|
Answer» `a_(1) gt a_(2) gt a_(3) gt a_(4)` |
|
| 3888. |
If the point whose position vectors are 2hati+hatj+hatk,6hati-hatj+2hatk and 12hati-5hatj+phatk are collinear, then the value of p is |
|
Answer» 2 `implies 2[-p+10]-1[6p-28]+1[-30+14]=0` `implies -8p+32=0 implies p=4` |
|
| 3889. |
If bar(a)=hati+hatj+2hatk and bar(b)=2hati+hatj-2hatk, find the unit vector in the direction of (i) 6bar(b)"" (ii) 2bar(a)-bar(b) |
|
Answer» `=0I+(1)/(SQRT(37))j+(6)/(sqrt(37))K` |
|
| 3890. |
Evaluate (i) int_(0)^(pi//2) sin^(2) x dx |
|
Answer» |
|
| 3891. |
With usaual notation in a triangle ABC, prove that r^2+s^2+4Rr= ab+bc+ca. |
|
Answer» |
|
| 3892. |
Obtain the following integrals : int (2x+3)/(x^(2)+3x)dx |
|
Answer» |
|
| 3893. |
Let setA = { 1, 2, 3, ….., 22}. Set B is a subset of AandB has exactly 11 elements, find the sum of elements of all possible subsets B . |
|
Answer» ` 252^(21)C_(11) ` |
|
| 3894. |
If is given the sigma_(x)^(2)=9,r=0.6 and regression equation of Y on X is 4x-5y+33=0 find Var (Y). |
|
Answer» |
|
| 3895. |
The roots of the equation x^(3)-14x^(2)+56x-64=0 are in |
|
Answer» A.G.P |
|
| 3896. |
Consider the following If vec(a) and vec(b) are the vectors forming consecutive sides of a regular hexagon ABCDEF, then 1. vec(CE)=vec(b)-2vec(a) " " 2. vec(AE)=2vec(b)-vec(a) 3. vec(FA)=vec(a)-vec(b) Which of the above are correct? |
|
Answer» 1 and 2 only Let `vec(AB)=vec(a)and vec(BC)=vec(b)` JOIN AD, FC and EB. They meet at a common point O, which is the centre of HEXAGON. `AO||BC` so, `vec(AO)=vec(BC)=vec(b)` `OC||AB ` so, `vec(OC)=vec(AB)=vec(a)` OAB forms a triangle, `vec(AB)+vec(BO)=vec(AO)` `rArrvec(BO)=vec(AO)-vec(AB)=vec(b)-vec(a)` BO=OE and they are on the same line, so, `vec(BO)=vec(OE)=vec(b)-vec(a)` In `DeltaOCE, vec(CO) + vec(OE)=vec(CE)` `rArr vec(CE)=-vec(OC)+OE=-vec(a)+vec(b)-vec(a)=vec(b)-vec(2a)` So, (1) is correct. `vec(BE)= 2 vec(OB) ` In `DeltaAEB, vec(AB)+vec(BE)=vec(AE)` `rArr vec(AE) = vec(AB)+2 vec(BO)+vec(a)+2(vec(b)-vec(a))` `rArr vec(AE)=vec(a) + 2 vec(b) - 2 vec (a) = 2 vec(b)-vec(a)` So, (2) is also correct, `FA||OB rArr vec(FA)=-vec(BO)=-(vec(b)-vec(a))=vec(a)-vec(b)` So, (3) is also correct. So, (1) , (2) & (3) are correct. |
|
| 3897. |
If 1,2,3 and 4 are the roots of the eqaution x^(4) + ax^(3) + b x^(2) + cx + d = 0,thena + 2b + c = |
|
Answer» 3AB + `a^(3) - c` |
|
| 3898. |
A bag containsn white and n black balls. Pairs of balls are drawn until the bag is empty. The probability that each pair consists of one white and one black ball is |
|
Answer» `(2^N)/(""^(2N)C_n)` |
|
| 3899. |
The vertices of the feasible region determined by some linear constraints are (0, 2), (1, 1), (3, 3), (1, 5). Let Z = px + qy where p, q gt 0. The condition on p and q so that the maximum of Z occurs at both the points (3, 3) and (1, 5) is …….. |
|
Answer» <P>p = q |
|
| 3900. |
Consider the straight line 3x + 4y + 8 = 0 i. What is the slope of the line which is perpendicular to the given line? ii. If the perpendicular line passes through (2,3), form its equation, iii. Find the foot of the perpendicular drawn from (2,3) to the given line. |
|
Answer» |
|