InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 151. |
1). 4052). 4043). 4094). 403 |
|
Answer» Follow BODMAS rule to solve this question, as PER the order given below, Step-1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2: Any MATHEMATICAL 'Of' or 'Exponent' must be solved NEXT, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 45% of 900 + (6.99 – 3.68) = ? ⇒ 405 + (7 – 4)= ? ⇒ 405 + 3 = ? ⇒ 408 |
|
| 152. |
1). 1002). 3003). 4004). 500 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be SOLVED first and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contains 'Division' and 'Multiplication' are calculated, Step-4- Last but not LEAST, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated. Given expression is, (360.97 ÷ 19) × 99.98 – (288.97 ÷ 17) × 99.98 = ? We can write the given values as: 360.97 ≈ 361, 99.98 ≈ 100, 288.97 ≈ 289 Approximating values in the given expression: ⇒ (361 ÷ 19) × 100 – (289 ÷ 17) × 100 = ? ⇒ 19 × 100 – 17 × 100 = ? ∴ ? = 100(19 – 17) = 200 |
|
| 153. |
(24 + 12) - 383 ÷ 25 × 2.5 + 12 = ?1). 9.72). 2.73). 8.74). 4.7 |
|
Answer» Follow BODMAS rule to solve this question, as per the ORDER GIVEN below, Step-1: Parts of an equation ENCLOSED in 'Brackets' must be solved first, and in the BRACKET, Step-2: Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, (24 + 12) – 383 ÷ 25 × 2.5 + 12 = ? ⇒ ? = 36 – 38.3 + 12 ⇒ ? = 9.7 |
|
| 154. |
1). 1/22). 1/33). 2/34). 4/5 |
|
Answer» $(\begin{array}{l}\left( {\frac{1}{3} \TIMES \frac{3}{5} \div \frac{4}{5} \times \frac{2}{3}} \right) + \left( {\frac{2}{7} \div \frac{3}{7}} \right) - \left( {\frac{4}{9} \times \frac{6}{8}} \right) = \;?\\ \RIGHTARROW \left( {\frac{1}{3} \times \frac{3}{5} \times \frac{5}{4} \times \frac{2}{3}} \right) + \left( {\frac{2}{7} \times \frac{7}{3}} \right) - \left( {\frac{4}{9} \times \frac{6}{8}} \right) = \;?\END{array})$ $(\begin{array}{l} \Rightarrow \frac{1}{6} + \frac{2}{3} - \frac{1}{3} = \;?\\ \Rightarrow \frac{5}{6} - \frac{1}{3} = \;?\end{array})$ ∴ ? = ½ |
|
| 155. |
7299.6 × 35/21 + 2500.2 × 9/4 - 1266.3 = 45% of X1). 225002). 367223). 320004). 35500 |
|
Answer» ⇒ 7299.6 × 35/21 + 2500.2 × 9/4 - 1266.3 = 45% of X ⇒ 12166 + 5625.45 - 1266.3 = .45 of X ⇒ 17791.45 - 1266.3 = .45X ⇒ 16525.15 = .45X ⇒ 16525.15/.45 = X ⇒ X = 36722 |
|
| 156. |
1). 772). 583). 684). 98 |
|
Answer» 288.220 ÷ 15.99 × 1.0203 – 2.003 + 3.85% of 1299.879 = ? Rewriting GIVEN question; ? = 288 ÷ 16 × 1 – 2 + 4% of 1300 ⇒ ? = 18 – 2 + 4/100 × 1300 ⇒ ? = 16 + 52 ∴ ? = 68 |
|
| 157. |
383 ÷ 255 × 25.5 + 12 = ?1). 50.32). 222.143). 68.304). 124.24 |
|
Answer» Follow BODMAS rule to solve this question, as per the order GIVEN below, Step-1-PARTS of an equation enclosed in 'Brackets' must be solved first, Step-2-Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, the given expression, 383 ÷ 255 × 25.5 + 12 = ? $(\begin{array}{L} \Rightarrow ? = 383 \times \frac{{25.5}}{{255}} + 12\\ \Rightarrow ? = \frac{{383}}{{10}} + 12 = 38.3 + 12 \end{array})$ ⇒ ? = 50.3 |
|
| 158. |
(4)3 + (9)3 – (11)2 – ? = (24)21). 1002). 963). 904). 85 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, STEP – 1 – Parts of an equation enclosed in the ‘BRACKETS’ must be solved first Step – 2 – Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next Step – 3 – Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step – 4 – Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ (4)3 + (9)3 – (11)2 – ? = (24)2 ⇒ 64 + 729 – 121 – ? = 576 ⇒ 793 – 121 – ? = 576 ⇒ 672 + ? = 576 ⇒ ? = 672 – 576 ⇒ ? = 96 |
|
| 159. |
1). 228442). 234843). 230764). 20376 |
|
Answer» 24 × 26 + 154 × 146 – 384 ÷ 12 =? Or, ? = 624 + 22484 – 32 = 23076 Or, we can CALCULATE it like following – ? = $(\left( {25 - 1} \right) \times \left( {25 + 1} \right) + \left( {150 + 4} \right) \times \left( {150 - 4} \right) - {{384} \over {12}})$ = (25)2 – (1)2 + (150)2 – (4)2 – 32 = 625 – 1 + 22500 – 16 – 32 = 23076 |
|
| 160. |
6235 + 433 – 68 = ? + 13471). 53522). 52533). 79474). 7497 |
|
Answer» ⇒ 6668 – 68 = ? + 1347 ⇒ 6600 – 1347 = ? ⇒ 5253 = ? |
|
| 161. |
1). 112). 1213). 0.114). 0.21 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation ENCLOSED in 'Brackets' MUST be SOLVED first, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 5.4% of 800 + 4.2% of 600 = 64 + (? × 0.4) $(\left( {5 \TIMES 2.4 - 3 \times 1.8} \right) + 10.4 = 0.34 \:\times \:?)$ ⇒ 5.4 × 8 + 4.2 × 6 = 64 + (? × 0.4) ⇒ 43.2 + 25.2 = 64 + (? × 0.4) ⇒ 68.4 = 64 + (? × 0.4) ⇒ ? × 0.4 = 68.4 - 64 ⇒ ? × 0.4 = 4.4 ⇒ ? = 4.4/0.4 = 11 ⇒ ? = 11 |
|
| 162. |
1). 122). 43). 164). 20 |
|
Answer» $(\frac{{{{\LEFT( {94.975} \RIGHT)}^2} - \;{{\left( {44.995} \right)}^2}}}{{49.95\; \TIMES \;34.98}} = ?)$ Take approximated values ⇒ 94.975 ≈ 95 ⇒ 44.995 ≈ 45 ⇒ 49.95 ≈ 50 ⇒ 34.98 ≈ 35 Putting these values in the equation $(\Rightarrow {\rm{}}\frac{{{{\left( {95} \right)}^2} - \;{{\left( {45} \right)}^2}}}{{50\; \times \;35}})$ ⇒ (95)2 – (45)2 = (95 – 45) × (95 + 45) [? a2 – B2 = (a + b)(a – b)] $(\Rightarrow {\rm{}}\frac{{\left( {95{\rm{\;}}-{\rm{\;}}45} \right){\rm{\;}} \times {\rm{\;}}\left( {95{\rm{\;}} + {\rm{\;}}45} \right)}}{{50\; \times \;35}}{\rm{}} = {\rm{}}\frac{{50{\rm{\;}} \times {\rm{\;}}140}}{{\left( {50{\rm{\;}} \times {\rm{\;}}35} \right)}}{\rm{}} = {\rm{}}4)$ ∴ ? = 4 |
|
| 163. |
(97.66 × 3.94 + 4.14) ÷ 2.90 + 44.80 = 185.91 + 3.01 × ?1). 42). 93). -64). 8 |
|
Answer» We can write following VALUES as : 97.66 ≈ 98, 3.94 ≈ 4 and 4.14 ≈ 4 2.90 ≈ 3, 44.80 ≈ 45 and 185.91 ≈ 186 and 3.01 ≈ 3 Given expression is, ⇒ (97.66 × 3.94 + 4.14) ÷ 2.90 + 44.80 = 185.91 + 3.01 × ? ⇒ (98 × 4 + 4) ÷ 3 + 45 = 186 + 3 × ? ⇒ (392 + 4) ÷ 3 + 45 = 186 + 3 × ? ⇒ 396 ÷ 3+ 45 = 186 + 3 × ? ⇒ 132 + 45 = 186 + 3 × ? ⇒ 177 = 186 + 3 × ? ⇒ ? × 3 = 177 - 186 ⇒ ? ≈ -9/3 ≈ -3 |
|
| 164. |
1). 52). 63). 124). 4 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below. Step - 1 - steps of an equation enclosed in ‘BRACKETS’ must be solved first. Step - 2 - any mathematical ‘Of’ or ‘Exponent’ must be solved next. Step - 3 - Next, the parts of the equation that contain ‘Division’ and ‘MULTIPLICATION’ are calculated. Step - 4 - Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated. Now, the given EXPRESSION: ⇒ 27 + 2 × (35 - 18) + 168 ÷ (5 + 2) - (9)2 = ? - 2 ⇒ 27 + 2 × 17 + 168 ÷ 7 - 81 = ? - 2 ⇒ 27 + 2 × 17 + 24 - 81 = ? - 2 ⇒ 27 + 34 + 24 - 81 = ? - 2 ⇒ ? - 2 = 85 - 81 ⇒ ? - 2 = 4 ⇒ ? = 6 |
|
| 165. |
14 × 50 ÷ 70 × 24 = 5 × 28 ÷ ?1). 32). 213). 224). 16 |
|
Answer» Using laws of Indices: (a)m × (a)n = a(m + n) (a)m ÷ (a)n = a(m - n) (am)n = (a)mn (a)(-m) = 1/am (a)0 = 1 (a)1/m = m√a Given expression is, ⇒ 14 × 50 ÷ 70 × 24 = 5 × 28 ÷ ? ⇒ 50 ÷ 5 × 24 = 5 × 28 ÷ ? ⇒ 10 × 24 = 5 × 28 ÷ ? ⇒ 5 × 2 × 24 = 5 × 28 ÷ ? ⇒ 25 = 28 ÷ ? ⇒ ? = 28 ÷ 25 ⇒ ? = 28 – 5 ⇒ ? = 23 ⇒ ? = 8 |
|
| 166. |
5432.8777 − 3185.992 − 2141.685 + 4876.418 ÷ 203.184 = ?1). 1292). 1403). 24.514). 25.51 |
|
Answer» Rules of Approximation: 1. If a number has digits to the right of the decimal LESS than 5, then just drop the digits to the right of the decimal. The number HENCE obtained will be the approximated value. 2. If a number has digits to the right of the decimal more than 5, then just drop the digits to the right of the decimal and RAISE the remaining number by '1'.The number hence obtained will be the approximated value. Using the same approach we will solve the given expression: 5432.8777 − 3185.992 − 2141.685 + 4876.418 ÷ 203.184 = 5433 − 3186 − 2142 + 4876 ÷ 203 = (5433 + 24) − (3186 + 2142) = 5457 − 5328 = 129 |
|
| 167. |
1).40962). 40363). 47344). 4736 |
|
Answer» Follow BODMAS RULE to SOLVE this question, as per the order given below, Step-1-Parts of an equation enclosed in 'Brackets' must be solved first, Step-2-Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, the given expression, $(\begin{array}{l} \sqrt[3]{?} = \LEFT( {36 \times 24} \right) \div 54\\ \Rightarrow \;\sqrt[3]{?} = \left( {864} \right) \div 54\\ \Rightarrow \;\sqrt[3]{?} = 16 \end{array})$ Or, ? = 4096 |
|
| 168. |
1/12.12 × 4116.23 + 7/15 × 945.33 + 200% of 1 = ? + 3391). 2332). 4443). 4474). 555 |
|
Answer» 1/12.12 × 4116.23 + 7/15 × 945.33 + 200% of 1 = ? + 339 It can be approximated as ⇒ 1/12 × 4116 + 7/15 × 945 + 2 = ? + 339 ⇒ 343 + (7*63) + 2 = ? + 339 ⇒ 343 + 441 + 2 = ? + 339 ⇒ 786 = ? + 339 ⇒ ? = 786 – 339 ⇒ ? = 447 |
|
| 169. |
1). 382). 523). 464). 58 |
|
Answer» The GIVEN expression is, 66.78 + (9.084)1/2 + ? = 52.314 + (8.041)2 We Can write above VALUES as, 66.78 ≈ 67, 9.084 ≈ 9 52.314 ≈ 52 and 8.041 ≈ 8 Then, ⇒ 67 + 91/2 + ? = 52 + 82 ⇒ 67 + 3 + ? = 52 + 64 ⇒ 70 + ? = 116 ⇒ ? ≈ 46 |
|
| 170. |
1). 240.652). 171.593). 211.864). 181.56 |
|
Answer» 0.66 × 546 - 0.43 × 439 = ? 360.36 - 188.77 = ? ? = 171.59 |
|
| 171. |
? % of [50% of {40% of (30% of 12000)}] = 250% of 801). 13.332). 16.673). 25.554). 27.78 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket, the BODMAS rule must be followed, ? % of [50% of {40% of (30% of 12000)}] = 250% of 80 ⇒ ? % of [50% of {40% of (30/100 × 12000)}] = 250% of 80 ⇒ ? % of [50% of {40/100 × 3600}] = 250% of 80 ⇒ ? % of [50/100 × 1440] = 250% of 80 ⇒ ? % of 720 = 250% of 80 Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, ⇒ ?/100 × 720 = 250/100 × 80 ⇒ ? = 200 × 100/720 ∴ ? = 27.78 |
|
| 172. |
1). 842). 863). 894). 78 |
|
Answer» Follow BODMAS rule to solve this question, as per the ORDER given below, Step-1: PARTS of an EQUATION enclosed in 'Brackets' must be solved first, and in the bracket, Step-2: Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 77.11 + 0.8 × 4.25 + 1 = ? ⇒ 77.11 + 1 × 4 + 1 = ? ⇒ 77 + 4 + 1 = ? ⇒ 82 = ? |
|
| 173. |
52 - 48 + 16 × 13 ÷ 52 = ?1). 82). 73). 134). 17 |
|
Answer» Now, the GIVEN expression, ⇒ 52 – 48 + 16 × $13 ÷ 52 = ? ⇒ ? = 52 – 48 + 4 ⇒ ? = 8 |
|
| 174. |
(736 ÷ 46) × (612 ÷ 51) = 44 × ? - 183 × 41). 182). 213). 244). 19 |
|
Answer» Follow BODMAS RULE to solve this question, as PER the ORDER given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (736 ÷ 46) × (612 ÷ 51) = 44 × ? - 183 × 4 ⇒ (16) × (12) = 44 × ? - 183 × 4 ⇒ 192 = 44 × ? - 183 × 4 ⇒ 192 = 44 × ? - 732 ⇒ 192 + 732 = 44 × ? ⇒ 924 = 44 × ? ⇒ ? = 924 /44 ⇒ ? = 21 |
|
| 175. |
1). 2342). 2123). 1244). 186 |
|
Answer» $(\frac{3}{5} \times 1\frac{1}{9} \times 318 = ?)$ ⇒ $(\frac{3}{5} \times \frac{10}{9} \times 318 = ?)$ ⇒? $(?= \frac{636}{3} = 212)$ |
|
| 176. |
182.20 + 77.80 - 70.89 = 18.75 × 8.88 + ?1). 112). 453). 184). 21 |
|
Answer» Given expression is, 182.20 + 77.80 - 70.89 = 18.75 × 8.88 + ? We can write the given values as: 182.20 ≈ 182 and 77.80 ≈ 78 70.89 ≈ 71 and 18.75 ≈ 19 and 8.88 ≈ 9 Then, ⇒ 182 + 78 - 71 = 19 × 9 + ? ⇒ 182 + 78 - 71 = 171 + ? ⇒ 260 - 71 = 171 + ? ⇒ 189 = 171 + ? ⇒ ? = 189 - 171 ⇒ ? ≈ 18 |
|
| 177. |
1). 502). 903). 404). 20 |
|
Answer» Using APPROXIMATION, $(\SQRT {5089} - \sqrt {2641} \; + \;\sqrt {1186} \APPROX \sqrt {4900} - \sqrt {2500} \; + \;\sqrt {900} \; = \;70 - 50\; + \;30\; = \;50)$ ∴ √5089 - √2641 + √459 = 50 |
|
| 178. |
(16)8.5 × (4)7.5 ÷ (256)-3 = 4?1). 35.52). 36.53). 14.54). 28.5 |
|
Answer» (16)8.5 × (4)7.5 ÷ (256)-3 = 4? ⇒ (4)17 × (4)7.5 ÷ (4)-12 = 4? ⇒ (4)17 + 7.5 ÷ (4)-12 = 4? ⇒ (4)24.5-(-12) = 4? ⇒ ? = 36.5 |
|
| 179. |
1). 102). 153). 204). 23 |
|
Answer» First of all we round the decimals to nearest whole NUMBERS and Non-perfect Square to the nearest perfect squared NUMBER. After that we APPLY BODMAS rule. Also we know that √2 = 1.414 and √3 = 1.732 $(\begin{array}{l} {\left\{ {{{\left( {1.732} \RIGHT)}^2} + {{\left( {1.414} \right)}^2}} \right\}^2} = \left( {\SQRT {2024} \div 2.999} \right) + ?\\ \Rightarrow {\left\{ {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} \right\}^2} = \left( {\sqrt {2025} \div 3} \right) + ? \end{array})$ ⇒ (3 + 2)2 = (45 ÷ 3) + ? ⇒ ? = 25 - 15 = 10 |
|
| 180. |
1). 4212). 4193). 4964). 417 |
|
Answer» ⇒ $({19.78^2} - {8.78^2} + {14.23^2} - 18.79 = ?)$ ⇒ $({20^2} - {9^2} + {14^2} - 19 = ?)$ ⇒ $({\RM{\;}}400 - 81 + 196 - 19 = ?)$ ⇒ 496 = ? ∴ ANSWER is 496 |
|
| 181. |
(2.33 + 33.33)2 + (1.06 + 0.04)2 – 2 × 2.33 × 33.33 + (33.33%)2 × 99 = ?1). 11062). 12003). 13324). 900 |
|
Answer» (2.33 + 33.33)2 + (1.06 + 0.04)2 – 2 × 2.33 × 33.33 + (33.33%)2 × 99 = ? ⇒ (2.33)2 + (33.33)2 + 2 × 2.33 × 33.33 + (1.1)2 – 2 × 2.33 × 33.33 + 1/9 × 99 = ? ⇒ (2.33)2 + (33.33)2 + 1.21 + 11 = ? This can be APPROXIMATE as ⇒ (2.3)2 + (33)2 + 1.21 + 11 = ? ⇒ 5.29 + 1089 + 1.21 + 11 = ? ⇒ 1106.5 = ? |
|
| 182. |
(11.80)3 − (24.01)2 + 44.20 = ?1). 12002). 8003). 7114). 900 |
|
Answer» Rules of Approximation: 1. If a NUMBER has digits to the right of the decimal LESS than 5, then just drop the digits to the right of the decimal. The number hence OBTAINED will be the approximated value. 2. If a number has digits to the right of the decimal more than 5, then just drop the digits to the right of the decimal and RAISE the remaining number by '1'.The number hence obtained will be the approximated value. Using the same approach we will solve the given expression: (11.80)3 − (24.01)2 + 44.20 = (12)3 − (24)2 + 44.20 = 1728 − 576 + 44 = 1196 ≈1200 |
|
| 183. |
1). 302). 73). 424). 3 |
|
Answer» Follow BODMAS RULE to solve this question, as per the order given below, Step - 1 - Parts of an EQUATION enclosed in 'Brackets' must be solved first, and in the bracket, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step - 4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ (1012 ÷ 23) + (1128 ÷ 3) = 210 + 7 × ? ⇒ (44) + (376) = 210 + 7 × ? ⇒ 420 = 210 + 7 × ? ⇒ 420 – 210 = 7 × ? ⇒ 210 = 7 × ? ⇒ ? = 30 |
|
| 184. |
1). 18852). 21003). 22834). 2139 |
|
Answer» APPROXIMATING VALUES and then USING BODMAS: 29.88% of 5103 - (17.48)2 + (32.52)2 = ? = 0.2988 × 5103 - (17.48)2 + (32.52)2 = 0.3 × 5103 - {(17.48)2 - (32.52)2} = 1530.9 - (17.48 - 32.52)(17.48 + 32.52) = 1531 - (-15.04)(50) = 1531 + 752 = 2283 |
|
| 185. |
1). 122). 103). 194). 14 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below. Step - 1 - steps of an equation enclosed in ‘Brackets’ must be solved first. Step - 2 - any mathematical ‘Of’ or ‘Exponent’ must be solved next. Step - 3 - Next, the parts of the equation that contain ‘Division’ and ‘Multiplication’ are calculated. Step - 4 - Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated. Now, the given expression: ⇒ 25 × 3 - 7 × 1/2 of 16 - {49 ÷ (5 + 2) = ? ⇒ 25 × 3 - 7 × 1/2 of 16 - {49 ÷ 7} = ? ⇒ 25 × 3 - 7 × 1/2 of 16 - 7 = ? ⇒ 25 × 3 - 7 × 8 - 7 = ? ⇒ 75 - 56 - 7 = ? ⇒ 19 - 7 = ? ⇒ ? = 12 |
|
| 186. |
1). 1092). 1123). 1184). 120 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is 82$ + (72$ - 40) × 5 = ? ⇒ ? = 64 + (49 - 40) × 5 ⇒ ? = 64 + 45 ⇒ ? = 109 |
|
| 187. |
1). 102). 2563). 1604). 100 |
|
Answer» Follow BODMAS rule to solve this question, as PER the order given below, Step-1: Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, the BODMAS rule must be followed, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 78% of √518400 ÷ 2.34 = ? × 1.5 ⇒ 78% of 720 ÷ 2.34 = ? × 1.5 ⇒ (0.78 × 720)/2.34 = ? × 1.5 ⇒ 561.6/2.34 = ? × 1.5 ⇒ ? = 240/1.5 ∴ ? = 160 |
|
| 188. |
1). 27752). 27573). 27554). 2575 |
|
Answer» Given expression is, ⇒ 160% of 570 + 270% of 690 =? $(\Rightarrow \left( {\FRAC{{160}}{{100}} \times 570} \RIGHT) + \left( {\frac{{270}}{{100}} \times 690} \right) = ?)$ ⇒ 91200/100 + 186300/100 = ? ⇒ 912 + 1863 = ? ⇒ ? = 2775 |
|
| 189. |
(682% of 782) ÷ 856 = ?1). 4.502). 10.653). 2.554). 8.75 |
|
Answer» Given expression: (682% of 782) ÷ 856 = ? $(\begin{array}{l} \RIGHTARROW \frac{{682}}{{100}} \TIMES 782 \div 856 = ?\\ \Rightarrow \frac{{682}}{{100}} \times 782 \times \frac{1}{{856}} = ?\\ \Rightarrow \frac{{533324}}{{85600}} = ?\end{array})$ ⇒ 6.23 = ? Approximating to nearest option ∴ ? = 6.25 |
|
| 190. |
6, 7, 15, 24, 88, ?1). 2132). 1133). 974). 104 |
|
Answer» ⇒ 6 + 12 = 6 + 1 = 7 ⇒ 7 + 23 = 7 + 8 = 15 ⇒ 15 + 32 = 15 + 9 = 24 ⇒ 24 + 43 = 24 + 64 = 88 ⇒ 88 + 52 = 88 + 25 = 113 = ? |
|
| 191. |
1). 12.632). 11.583). 11.514). 11.68 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the ORDER given below, Step-1: Parts of an equation enclosed in ‘BRACKETS’ must be solved first. Step-2: Any mathematical ‘Of’ or ‘EXPONENT’ must be solved next. Step-3: Next, the parts of the equation that contain ‘Divison’ and ‘Multiplication’ are calculated. Step-4: LAST but not the least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated. Given expression: 16.75 - [2.25 + {1.28 + (7.43 - (6.02 - 0.23))}] = 16.75 - [2.25 + {1.28 + (7.43 - 5.79)}] = 16.75 - [2.25 + {1.28 + 1.64}] = 16.75 - [2.25 + 2.92] = 16.75 - 5.17 = 11.58 |
|
| 192. |
1). 1472). 1503). 1354). 175 |
|
Answer» 42.005% of 349.999 = ? Here, 42.005 ≈ 42 And 349.999 ≈ 350 Now, the GIVEN EXPRESSION will BECOME: ? ≈ 42% of 350 ⇒ ? ≈ (42/100) × 350 ⇒ ? ≈ 147 |
|
| 193. |
1). 102). 1003). 0.14). 0.00001 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation ENCLOSED in 'Brackets' must be SOLVED FIRST, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. $(\begin{array}{l} \Rightarrow \left( {\frac{{18.49 - 9.81}}{{1849 - 981}}} \right) \DIV \left( {\frac{{184.9 - 98.1}}{{0.1849 - 0.0981}}} \right) = \;?\\ \Rightarrow \left( {\frac{{8.68}}{{868}}} \right) \div \left( {\frac{{86.8}}{{0.0868}}} \right) = ?\\ \Rightarrow \left( {\frac{{868 \times 0.01}}{{868}}} \right) \div \left( {\frac{{\left( {868 \times 0.1} \right)}}{{\left( {868 \times 0.0001} \right)}}} \right) = ?\\ \Rightarrow \left( {0.01} \right) \times \frac{{0.0001}}{{0.1}} = ? \end{array})$ ⇒ ? = 10-2 × 10-4 × 10 ⇒ ? = 10-5 |
|
| 194. |
72% of 650 - 28% of 475 = 77% of 600 - ?1). 1272). 1073). 1894). 98 |
|
Answer» ⇒ 72% of 650 - 28% of 475 = 77% of 600 - ? ⇒ (72/100) × 650 - (28/100) × 475 = (77/100) × 600 - ? ⇒ 18 × 26 - 7 × 19 = 77 × 6 - ? ⇒ 468 - 133 = 462 - ? ⇒ 335 = 462 - ? ⇒ ? = 462 - 335 ⇒ ? = 127 |
|
| 195. |
1564.666 + 82.5091 × 44.581 – 1034.111 = ?1). 284502). 4003). 16004). 14225 |
|
Answer» In this type of question, we are expected to calculate Approximate value (not exact value), so we can REPLACE the GIVEN NUMBERS by their NEAREST perfect places which makes the calculation easy. We can write the given VALUES as: 1564.666 ≈ 1565 82.5091 ≈ 82.5 44.581 ≈ 44.6 1034.111 ≈ 1034 Now, the given expression: 1564.666 + 82.5091 × 44.581 – 1034.111 = ? ⇒ ? ≈ 1565 + 82.5 × 44.6 – 1034 ⇒ ? ≈ 1565 + 3679.5 – 1034 ⇒ ? ≈ 4210 |
|
| 196. |
1). 302). None of these3). 254). 35 |
|
Answer» 135% of 480 + ? % of 320 = 728$ 1.35 $× 480 + (?/100) × 320 = 728 648 + ? × 3.2 = 728 ? × 3.2 = 80 ? = 25 |
|
| 197. |
3.2% of 500 × 2.5% of ? = 3201). 6502). 7003). 6004). 800 |
|
Answer» Given expression, 3.2% of 500 × 2.5% of ? = 320 $(\begin{array}{L} \Rightarrow \LEFT( {\frac{{3.2}}{{100}} \times 500} \RIGHT) \times \left( {\frac{{2.5}}{{100}} \times ?} \right) = 320\\ \Rightarrow 16 \times \left( {\frac{{2.5}}{{100}} \times ?} \right) = 320\\ \Rightarrow \left( {\frac{{2.5}}{{100}} \times ?} \right) = \frac{{320}}{{16}}\\ \Rightarrow \left( {\frac{{2.5}}{{100}} \times ?} \right) = 20\\ \Rightarrow \;? = \frac{{20}}{{2.5}} \times 100 \end{array})$ ⇒ ? = 800 |
|
| 198. |
25 × 625 ÷ 125 = 500 × 22 ÷ ?1). 12). 233). 164). 4 |
|
Answer» Follow these BODMAS RULES to solve the question Step-1? The part of the equation containing 'Brackets' must be solved first, and in the bracket, Step-2? Any mathematical 'Of' or 'Exponent' must be solved next, Step-3? Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved Step-4? At last, the part of the equation that contains 'Addition' and 'Subtraction' should be solved. ⇒ 25 × 625 ÷ 125 = 500 × 22 ÷ ? ⇒ 52 × 54 ÷ 53 = 5 × 100 × 22 ÷ ? ⇒ 52 × 54 ÷ 53 = 5 × 25 × 4 × 22 ÷ ? ⇒ 52 × 54 ÷ 53 = 5 × 52 × 22 × 22 ÷ ? ⇒ 5(2 + 4 – 3) = 5(1 + 2) × 24 ÷ ? ⇒ 53 = 53 × 24 ÷ ? ⇒ ? = 24 ⇒ ? = 16 |
|
| 199. |
√7056 + 13 × 24 – 1157 ÷ 13 = ?1). 136.452). 123.853). 142.954). 307 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation enclosed in the ‘BRACKETS’ must be solved first Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next Step-3: Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step-4: LAST but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given expression: ⇒ √7056 + 13 × 24 – 1157 ÷ 13 = ? ⇒ 84 + 13 × 24 – 1157 ÷ 13 = ? ⇒ 84 + 13 × 24 – 89 = ? ⇒ 84 + 312 – 89 = ? ⇒ 84 + 312 – 89 = ? ⇒ 396 – 89 = ? ⇒ 307 = ? |
|
| 200. |
1). 7/32). 4/33). 5/34). 1/3 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the BRACKET, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(\BEGIN{array}{l} \frac{{\frac{1}{3} \times 24 \DIV 4}}{{\frac{1}{4} \times 30 \div 5}} = ?\\ \Rightarrow \frac{{\frac{1}{3} \times 6}}{{\frac{1}{4} \times 6}} = ?\\ \Rightarrow ? = \frac{4}{3} \end{array})$ |
|