Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

1). 4052). 4043). 4094). 403

Answer»

Follow BODMAS rule to solve this question, as PER the order given below,

Step-1: Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2: Any MATHEMATICAL 'Of' or 'Exponent' must be solved NEXT,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

45% of 900 + (6.99 – 3.68) = ?

⇒ 405 + (7 – 4)= ?

⇒ 405 + 3 = ?

⇒ 408

152.

1). 1002). 3003). 4004). 500

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1- PARTS of an equation enclosed in 'Brackets' must be SOLVED first and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that contains 'Division' and 'Multiplication' are calculated,

Step-4- Last but not LEAST, the parts of the equation that contains 'Addition' and 'Subtraction' should be calculated.

Given expression is,

(360.97 ÷ 19) × 99.98 – (288.97 ÷ 17) × 99.98 = ?

We can write the given values as: 

360.97 ≈ 361, 99.98 ≈ 100, 288.97 ≈ 289

Approximating values in the given expression:

⇒ (361 ÷ 19) × 100 – (289 ÷ 17) × 100 = ?

⇒ 19 × 100 – 17 × 100 = ?

∴ ? = 100(19 – 17) = 200

153.

(24 + 12) - 383 ÷ 25 × 2.5 + 12 = ?1). 9.72). 2.73). 8.74). 4.7

Answer»

Follow BODMAS rule to solve this question, as per the ORDER GIVEN below,

Step-1: Parts of an equation ENCLOSED in 'Brackets' must be solved first, and in the BRACKET,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved NEXT,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

 (24 + 12) – 383 ÷ 25 × 2.5 + 12 = ?

⇒ ? = 36 – 38.3 + 12

⇒ ? = 9.7
154.

1). 1/22). 1/33). 2/34). 4/5

Answer»

$(\begin{array}{l}\left( {\frac{1}{3} \TIMES \frac{3}{5} \div \frac{4}{5} \times \frac{2}{3}} \right) + \left( {\frac{2}{7} \div \frac{3}{7}} \right) - \left( {\frac{4}{9} \times \frac{6}{8}} \right) = \;?\\ \RIGHTARROW \left( {\frac{1}{3} \times \frac{3}{5} \times \frac{5}{4} \times \frac{2}{3}} \right) + \left( {\frac{2}{7} \times \frac{7}{3}} \right) - \left( {\frac{4}{9} \times \frac{6}{8}} \right) = \;?\END{array})$

$(\begin{array}{l} \Rightarrow \frac{1}{6} + \frac{2}{3} - \frac{1}{3} = \;?\\ \Rightarrow \frac{5}{6} - \frac{1}{3} = \;?\end{array})$

∴ ? = ½
155.

7299.6 × 35/21 + 2500.2 × 9/4 - 1266.3 = 45% of X1). 225002). 367223). 320004). 35500

Answer»

⇒ 7299.6 × 35/21 + 2500.2 × 9/4 - 1266.3 = 45% of X

⇒ 12166 + 5625.45 - 1266.3 = .45 of X

⇒ 17791.45 - 1266.3 = .45X

⇒ 16525.15 = .45X

⇒ 16525.15/.45 = X

⇒ X = 36722
156.

1). 772). 583). 684). 98

Answer»

288.220 ÷ 15.99 × 1.0203 – 2.003 + 3.85% of 1299.879 = ?

Rewriting GIVEN question;

? = 288 ÷ 16 × 1 – 2 + 4% of 1300

⇒ ? = 18 – 2 + 4/100 × 1300

⇒ ? = 16 + 52

∴ ? = 68

157.

383 ÷ 255 × 25.5 + 12 = ?1). 50.32). 222.143). 68.304). 124.24

Answer»

Follow BODMAS rule to solve this question, as per the order GIVEN below,

Step-1-PARTS of an equation enclosed in 'Brackets' must be solved first,

Step-2-Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4-Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Now, the given expression,

383 ÷ 255 × 25.5 + 12 = ?

$(\begin{array}{L} \Rightarrow ? = 383 \times \frac{{25.5}}{{255}} + 12\\ \Rightarrow ? = \frac{{383}}{{10}} + 12 = 38.3 + 12 \end{array})$

⇒ ? = 50.3
158.

(4)3 + (9)3 – (11)2 – ? = (24)21). 1002). 963). 904). 85

Answer»

FOLLOW BODMAS rule to solve this question, as per the order given below,

STEP – 1 – Parts of an equation enclosed in the ‘BRACKETS’ must be solved first

Step – 2 – Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next

Step – 3 – Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated

Step – 4 – Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated

Now, the given expression:

⇒ (4)3 + (9)3 – (11)2 – ? = (24)2

⇒ 64 + 729 – 121 – ? = 576

⇒ 793 – 121 – ? = 576

⇒ 672 + ? = 576

⇒ ? = 672 – 576

⇒ ? = 96
159.

1). 228442). 234843). 230764). 20376

Answer»

24 × 26 + 154 × 146 – 384 ÷ 12 =?

Or, ? = 624 + 22484 – 32

= 23076

Or, we can CALCULATE it like following –

? = $(\left( {25 - 1} \right) \times \left( {25 + 1} \right) + \left( {150 + 4} \right) \times \left( {150 - 4} \right) - {{384} \over {12}})$

= (25)2 – (1)2 + (150)2 – (4)2 – 32

= 625 – 1 + 22500 – 16 – 32

= 23076

160.

6235 + 433 – 68 = ? + 13471). 53522). 52533). 79474). 7497

Answer»

GIVEN EXPRESSION,

⇒ 6235 + 43368 = ? + 1347

⇒ 6668 – 68 = ? + 1347

⇒ 6600 – 1347 = ?

5253 = ?
161.

1). 112). 1213). 0.114). 0.21

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1: Parts of an equation ENCLOSED in 'Brackets' MUST be SOLVED first, and in the bracket,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ 5.4% of 800 + 4.2% of 600 = 64 + (? × 0.4)

$(\left( {5 \TIMES 2.4 - 3 \times 1.8} \right) + 10.4 = 0.34 \:\times \:?)$

⇒ 5.4 × 8 + 4.2 × 6 = 64 + (? × 0.4)

⇒ 43.2 + 25.2 = 64 + (? × 0.4)

⇒ 68.4 = 64 + (? × 0.4)

⇒ ? × 0.4 = 68.4 - 64

⇒ ? × 0.4 = 4.4

⇒ ? = 4.4/0.4 = 11

⇒ ? = 11

162.

1). 122). 43). 164). 20

Answer»

$(\frac{{{{\LEFT( {94.975} \RIGHT)}^2} - \;{{\left( {44.995} \right)}^2}}}{{49.95\; \TIMES \;34.98}} = ?)$

Take approximated values

⇒ 94.975 ≈ 95

⇒ 44.995 ≈ 45

⇒ 49.95 ≈ 50

⇒ 34.98 ≈ 35

Putting these values in the equation

$(\Rightarrow {\rm{}}\frac{{{{\left( {95} \right)}^2} - \;{{\left( {45} \right)}^2}}}{{50\; \times \;35}})$

⇒ (95)2 – (45)2 = (95 – 45) × (95 + 45) [? a2B2 = (a + b)(a – b)]

$(\Rightarrow {\rm{}}\frac{{\left( {95{\rm{\;}}-{\rm{\;}}45} \right){\rm{\;}} \times {\rm{\;}}\left( {95{\rm{\;}} + {\rm{\;}}45} \right)}}{{50\; \times \;35}}{\rm{}} = {\rm{}}\frac{{50{\rm{\;}} \times {\rm{\;}}140}}{{\left( {50{\rm{\;}} \times {\rm{\;}}35} \right)}}{\rm{}} = {\rm{}}4)$

∴ ? = 4
163.

(97.66 × 3.94 + 4.14) ÷ 2.90 + 44.80 = 185.91 + 3.01 × ?1). 42). 93). -64). 8

Answer»

We can write following VALUES as :

97.66 ≈ 98, 3.94 ≈ 4 and 4.14 ≈ 4

2.90 ≈ 3, 44.80 ≈ 45 and 185.91 ≈ 186 and 3.01 ≈ 3

Given expression is,

⇒ (97.66 × 3.94 + 4.14) ÷ 2.90 + 44.80 = 185.91 + 3.01 × ?

⇒ (98 × 4 + 4) ÷ 3 + 45 = 186 + 3 × ?

⇒ (392 + 4) ÷ 3 + 45 = 186 + 3 × ?

396 ÷ 3+ 45 = 186 + 3 × ?

⇒ 132 + 45 = 186 + 3 × ?

177 = 186 + 3 × ?

⇒ ? × 3 = 177 - 186

⇒ ? ≈ -9/3 ≈ -3
164.

1). 52). 63). 124). 4

Answer»

Follow BODMAS rule to solve this question, as per the order given below.

Step - 1 - steps of an equation enclosed in ‘BRACKETS’ must be solved first.

Step - 2 - any mathematical ‘Of’ or ‘Exponent’ must be solved next.

Step - 3 - Next, the parts of the equation that contain ‘Division’ and ‘MULTIPLICATION’ are calculated.

Step - 4 - Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated.

Now, the given EXPRESSION:

⇒ 27 + 2 × (35 - 18) + 168 ÷ (5 + 2) - (9)2 = ? - 2

⇒ 27 + 2 × 17 + 168 ÷ 7 - 81 = ? - 2

⇒ 27 + 2 × 17 + 24 - 81 = ? - 2

⇒ 27 + 34 + 24 - 81 = ? - 2

⇒ ? - 2 = 85 - 81

⇒ ? - 2 = 4

⇒ ? = 6

165.

14 × 50 ÷ 70 × 24 = 5 × 28 ÷ ?1). 32). 213). 224). 16

Answer»

Using laws of Indices:

(a)m × (a)n = a(m + n)

(a)m ÷ (a)n = a(m - n)

(am)n = (a)mn

(a)(-m) = 1/am

(a)0 = 1

(a)1/m = m√a

Given expression is,

⇒ 14 × 50 ÷ 70 × 24 = 5 × 28 ÷ ?

⇒ 50 ÷ 5 × 24 = 5 × 28 ÷ ?

⇒ 10 × 24 = 5 × 28 ÷ ?

⇒ 5 × 2 × 24 = 5 × 28 ÷ ?

⇒ 25 = 28 ÷ ?

⇒ ? = 28 ÷ 25

⇒ ? = 28 – 5

⇒ ? = 23

⇒ ? = 8
166.

5432.8777 − 3185.992 − 2141.685 + 4876.418 ÷ 203.184 = ?1). 1292). 1403). 24.514). 25.51

Answer»

Rules of Approximation:

1. If a number has digits to the right of the decimal LESS than 5, then just drop the digits to the right of the decimal. The number HENCE obtained will be the approximated value.

2. If a number has digits to the right of the decimal more than 5, then just drop the digits to the right of the decimal and RAISE the remaining number by '1'.The number hence obtained will be the approximated value.

Using the same approach we will solve the given expression:

5432.8777 − 3185.992 − 2141.685 + 4876.418 ÷ 203.184

= 5433 − 3186 − 2142 + 4876 ÷ 203

= (5433 + 24) − (3186 + 2142)

= 5457 − 5328

= 129

167.

1).40962). 40363). 47344). 4736

Answer»

Follow BODMAS RULE to SOLVE this question, as per the order given below,

Step-1-Parts of an equation enclosed in 'Brackets' must be solved first,

Step-2-Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3-Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated,

Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Now, the given expression,

$(\begin{array}{l} \sqrt[3]{?} = \LEFT( {36 \times 24} \right) \div 54\\ \Rightarrow \;\sqrt[3]{?} = \left( {864} \right) \div 54\\ \Rightarrow \;\sqrt[3]{?} = 16 \end{array})$

Or, ? = 4096
168.

1/12.12 × 4116.23 + 7/15 × 945.33 + 200% of 1 = ? + 3391). 2332). 4443). 4474). 555

Answer»

1/12.12 × 4116.23 + 7/15 × 945.33 + 200% of 1 = ? + 339

It can be approximated as

⇒ 1/12 × 4116 + 7/15 × 945 + 2 = ? + 339

⇒ 343 + (7*63) + 2 = ? + 339

⇒ 343 + 441 + 2 = ? + 339

⇒ 786 = ? + 339

⇒ ? = 786 – 339

⇒ ? = 447
169.

1). 382). 523). 464). 58

Answer»

The GIVEN expression is,

66.78 + (9.084)1/2 + ? = 52.314 + (8.041)2

We Can write above VALUES as,

66.78 ≈ 67, 9.084 ≈ 9

52.314 ≈ 52 and 8.041 ≈ 8

Then,

⇒ 67 + 91/2 + ? = 52 + 82

⇒ 67 + 3 + ? = 52 + 64

70 + ? = 116

⇒ ? ≈ 46
170.

1). 240.652). 171.593). 211.864). 181.56

Answer»

66% of 54643% of 439 = ?$

0.66 × 546 - 0.43 × 439 = ?

360.36 - 188.77 = ?

? = 171.59

171.

? % of [50% of {40% of (30% of 12000)}] = 250% of 801). 13.332). 16.673). 25.554). 27.78

Answer»

Follow BODMAS rule to SOLVE this question, as per the order given below,

Step-1- Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket, the BODMAS rule must be followed,

? % of [50% of {40% of (30% of 12000)}] = 250% of 80

⇒ ? % of [50% of {40% of (30/100 × 12000)}] = 250% of 80

⇒ ? % of [50% of {40/100 × 3600}] = 250% of 80

⇒ ? % of [50/100 × 1440] = 250% of 80

⇒ ? % of 720 = 250% of 80

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

⇒ ?/100 × 720 = 250/100 × 80

⇒ ? = 200 × 100/720

∴ ? = 27.78
172.

1). 842). 863). 894). 78

Answer»

Follow BODMAS rule to solve this question, as per the ORDER given below,

Step-1: PARTS of an EQUATION enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2: Any MATHEMATICAL 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ 77.11 + 0.8 × 4.25 + 1 = ?

⇒ 77.11 + 1 × 4 + 1 = ?

⇒ 77 + 4 + 1 = ?

⇒ 82 = ?

173.

52 - 48 + 16 × 13 ÷ 52 = ?1). 82). 73). 134). 17

Answer»

Now, the GIVEN expression,

⇒ 52 – 48 + 16 × $13 ÷ 52 = ?

⇒ ? = 52 – 48 + 4

 ⇒ ? = 8
174.

(736 ÷ 46) × (612 ÷ 51) = 44 × ? - 183 × 41). 182). 213). 244). 19

Answer»

Follow BODMAS RULE to solve this question, as PER the ORDER given below,

Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ (736 ÷ 46) × (612 ÷ 51) = 44 × ? - 183 × 4

⇒ (16) × (12) = 44 × ? - 183 × 4

⇒ 192 = 44 × ? - 183 × 4

⇒ 192 = 44 × ? - 732

⇒ 192 + 732 = 44 × ?

⇒ 924 = 44 × ?

⇒ ? = 924 /44

⇒ ? = 21
175.

1). 2342). 2123). 1244). 186

Answer»

$(\frac{3}{5} \times 1\frac{1}{9} \times 318 = ?)$

⇒ $(\frac{3}{5} \times \frac{10}{9} \times 318 = ?)$

⇒? $(?= \frac{636}{3} = 212)$

176.

182.20 + 77.80 - 70.89 = 18.75 × 8.88 + ?1). 112). 453). 184). 21

Answer»

Given expression is,

182.20 + 77.80 - 70.89 = 18.75 × 8.88 + ?

We can write the given values as:

182.20 ≈ 182 and 77.80 ≈ 78

70.89 ≈ 71 and 18.75 ≈ 19 and 8.88 ≈ 9

Then,

⇒ 182 + 78 - 71 = 19 × 9 + ?

⇒ 182 + 78 - 71 = 171 + ?

⇒ 260 - 71 = 171 + ?

⇒ 189 = 171 + ?

⇒ ? = 189 - 171

⇒ ? ≈ 18
177.

1). 502). 903). 404). 20

Answer»

Using APPROXIMATION,

$(\SQRT {5089} - \sqrt {2641} \; + \;\sqrt {1186} \APPROX \sqrt {4900} - \sqrt {2500} \; + \;\sqrt {900} \; = \;70 - 50\; + \;30\; = \;50)$

∴ √5089 - √2641 + √459 = 50
178.

(16)8.5 × (4)7.5 ÷ (256)-3 = 4?1). 35.52). 36.53). 14.54). 28.5

Answer»

(16)8.5 × (4)7.5 ÷ (256)-3 = 4?

⇒ (4)17 × (4)7.5 ÷ (4)-12 = 4?

⇒ (4)17 + 7.5 ÷ (4)-12 = 4?

⇒ (4)24.5-(-12) = 4?

⇒ ? = 36.5
179.

1). 102). 153). 204). 23

Answer»

First of all we round the decimals to nearest whole NUMBERS and Non-perfect Square to the nearest perfect squared NUMBER. After that we APPLY BODMAS rule.

Also we know that √2 = 1.414 and √3 = 1.732

$(\begin{array}{l} {\left\{ {{{\left( {1.732} \RIGHT)}^2} + {{\left( {1.414} \right)}^2}} \right\}^2} = \left( {\SQRT {2024} \div 2.999} \right) + ?\\ \Rightarrow {\left\{ {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} \right\}^2} = \left( {\sqrt {2025} \div 3} \right) + ? \end{array})$

⇒ (3 + 2)2 = (45 ÷ 3) + ?

⇒ ? = 25 - 15 = 10

180.

1). 4212). 4193). 4964). 417

Answer»

⇒ $({19.78^2} - {8.78^2} + {14.23^2} - 18.79 = ?)$

⇒ $({20^2} - {9^2} + {14^2} - 19 = ?)$

⇒ $({\RM{\;}}400 - 81 + 196 - 19 = ?)$

496 = ?

ANSWER is 496
181.

(2.33 + 33.33)2 + (1.06 + 0.04)2 – 2 × 2.33 × 33.33 + (33.33%)2 × 99 = ?1). 11062). 12003). 13324). 900

Answer»

(2.33 + 33.33)2 + (1.06 + 0.04)2 – 2 × 2.33 × 33.33 + (33.33%)2 × 99 = ?

⇒ (2.33)2 + (33.33)2 + 2 × 2.33 × 33.33 + (1.1)2 – 2 × 2.33 × 33.33 + 1/9 × 99 = ?

⇒ (2.33)2 + (33.33)2 + 1.21 + 11 = ?

This can be APPROXIMATE as

⇒ (2.3)2 + (33)2 + 1.21 + 11 = ?

⇒ 5.29 + 1089 + 1.21 + 11 = ?

⇒ 1106.5 = ?
182.

(11.80)3 − (24.01)2 + 44.20 = ?1). 12002). 8003). 7114). 900

Answer»

Rules of Approximation:

1. If a NUMBER has digits to the right of the decimal LESS than 5, then just drop the digits to the right of the decimal. The number hence OBTAINED will be the approximated value.

2. If a number has digits to the right of the decimal more than 5, then just drop the digits to the right of the decimal and RAISE the remaining number by '1'.The number hence obtained will be the approximated value.

Using the same approach we will solve the given expression:

(11.80)3 − (24.01)2 + 44.20

= (12)3 − (24)2 + 44.20

= 1728 − 576 + 44

= 1196 ≈1200

183.

1). 302). 73). 424). 3

Answer»

Follow BODMAS RULE to solve this question, as per the order given below,

Step - 1 - Parts of an EQUATION enclosed in 'Brackets' must be solved first, and in the bracket,

Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next,

Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step - 4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

⇒ (1012 ÷ 23) + (1128 ÷ 3) = 210 + 7 × ?

⇒ (44) + (376) = 210 + 7 × ?

⇒ 420 = 210 + 7 × ?

⇒ 420 – 210 = 7 × ?

⇒ 210 = 7 × ?

⇒ ? = 30

184.

1). 18852). 21003). 22834). 2139

Answer»

APPROXIMATING VALUES and then USING BODMAS:

29.88% of 5103 - (17.48)2 + (32.52)2 = ?

= 0.2988 × 5103 - (17.48)2 + (32.52)2

= 0.3 × 5103 - {(17.48)2 - (32.52)2}

= 1530.9 - (17.48 - 32.52)(17.48 + 32.52)

= 1531 - (-15.04)(50)

= 1531 + 752

= 2283

185.

1). 122). 103). 194). 14

Answer»

Follow BODMAS rule to SOLVE this question, as per the order given below.

Step - 1 - steps of an equation enclosed in ‘Brackets’ must be solved first.

Step - 2 - any mathematical ‘Of’ or ‘Exponent’ must be solved next.

Step - 3 - Next, the parts of the equation that contain ‘Division’ and ‘Multiplication’ are calculated.

Step - 4 - Last but not least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated.

Now, the given expression:

⇒ 25 × 3 - 7 × 1/2 of 16 - {49 ÷ (5 + 2) = ?

⇒ 25 × 3 - 7 × 1/2 of 16 - {49 ÷ 7} = ?

⇒ 25 × 3 - 7 × 1/2 of 16 - 7 = ?

⇒ 25 × 3 - 7 × 8 - 7 = ?

⇒ 75 - 56 - 7 = ?

⇒ 19 - 7 = ?

⇒ ? = 12

186.

1). 1092). 1123). 1184). 120

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1- PARTS of an equation enclosed in 'Brackets' must be solved FIRST, and in the bracket,

Step-2- Any mathematical 'Of' or 'Exponent' must be solved NEXT,

Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is

82$ + (72$ - 40) × 5 = ?

⇒ ? = 64 + (49 - 40) × 5

⇒ ? = 64 + 45

⇒ ? = 109

187.

1). 102). 2563). 1604). 100

Answer»

Follow BODMAS rule to solve this question, as PER the order given below,

Step-1: Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, the BODMAS rule must be followed,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that CONTAIN 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

78% of √518400 ÷ 2.34 = ? × 1.5

⇒ 78% of 720 ÷ 2.34 = ? × 1.5

⇒ (0.78 × 720)/2.34 = ? × 1.5

⇒ 561.6/2.34 = ? × 1.5

⇒ ? = 240/1.5

∴ ? = 160
188.

1). 27752). 27573). 27554). 2575

Answer»

Given expression is,

⇒ 160% of 570 + 270% of 690 =?

$(\Rightarrow \left( {\FRAC{{160}}{{100}} \times 570} \RIGHT) + \left( {\frac{{270}}{{100}} \times 690} \right) = ?)$

⇒ 91200/100 + 186300/100 = ?

⇒ 912 + 1863 = ?

⇒ ? = 2775
189.

(682% of 782) ÷ 856 = ?1). 4.502). 10.653). 2.554). 8.75

Answer»

Given expression:

(682% of 782) ÷ 856 = ?

$(\begin{array}{l} \RIGHTARROW \frac{{682}}{{100}} \TIMES 782 \div 856 = ?\\ \Rightarrow \frac{{682}}{{100}} \times 782 \times \frac{1}{{856}} = ?\\ \Rightarrow \frac{{533324}}{{85600}} = ?\end{array})$

⇒ 6.23 = ?

Approximating to nearest option

∴ ? = 6.25
190.

6, 7, 15, 24, 88, ?1). 2132). 1133). 974). 104

Answer»

⇒ 6 + 12 = 6 + 1 = 7

⇒ 7 + 23 = 7 + 8 = 15

⇒ 15 + 32 = 15 + 9 = 24

⇒ 24 + 43 = 24 + 64 = 88

⇒ 88 + 52 = 88 + 25 = 113 = ?
191.

1). 12.632). 11.583). 11.514). 11.68

Answer»

FOLLOW BODMAS rule to solve this question, as per the ORDER given below,

Step-1: Parts of an equation enclosed in ‘BRACKETS’ must be solved first.

Step-2: Any mathematical ‘Of’ or ‘EXPONENT’ must be solved next.

Step-3: Next, the parts of the equation that contain ‘Divison’ and ‘Multiplication’ are calculated.

Step-4: LAST but not the least, the parts of the equation that contain ‘Addition’ and ‘Subtraction’ should be calculated.

Given expression:

16.75 - [2.25 + {1.28 + (7.43 - (6.02 - 0.23))}]

= 16.75 - [2.25 + {1.28 + (7.43 - 5.79)}]

= 16.75 - [2.25 + {1.28 + 1.64}]

= 16.75 - [2.25 + 2.92]

= 16.75 - 5.17

= 11.58

192.

1). 1472). 1503). 1354). 175

Answer»

42.005% of 349.999 = ?

Here, 42.005 ≈ 42

And 349.999 ≈ 350

Now, the GIVEN EXPRESSION will BECOME:

? ≈ 42% of 350

⇒ ? ≈ (42/100) × 350

⇒ ? ≈ 147

193.

1). 102). 1003). 0.14). 0.00001

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1: Parts of an equation ENCLOSED in 'Brackets' must be SOLVED FIRST, and in the bracket,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

$(\begin{array}{l} \Rightarrow \left( {\frac{{18.49 - 9.81}}{{1849 - 981}}} \right) \DIV \left( {\frac{{184.9 - 98.1}}{{0.1849 - 0.0981}}} \right) = \;?\\ \Rightarrow \left( {\frac{{8.68}}{{868}}} \right) \div \left( {\frac{{86.8}}{{0.0868}}} \right) = ?\\ \Rightarrow \left( {\frac{{868 \times 0.01}}{{868}}} \right) \div \left( {\frac{{\left( {868 \times 0.1} \right)}}{{\left( {868 \times 0.0001} \right)}}} \right) = ?\\ \Rightarrow \left( {0.01} \right) \times \frac{{0.0001}}{{0.1}} = ? \end{array})$

⇒ ? = 10-2 × 10-4 × 10

⇒ ? = 10-5 

194.

72% of 650 - 28% of 475 = 77% of 600 - ?1). 1272). 1073). 1894). 98

Answer»

⇒ 72% of 650 - 28% of 475 = 77% of 600 - ?

⇒ (72/100) × 650 - (28/100) × 475 = (77/100) × 600 - ?

⇒ 18 × 26 - 7 × 19 = 77 × 6 - ?

⇒ 468 - 133 = 462 - ?

⇒ 335 = 462 - ?

⇒ ? = 462 - 335

⇒ ? = 127
195.

1564.666 + 82.5091 × 44.581 – 1034.111 = ?1). 284502). 4003). 16004). 14225

Answer»

In this type of question, we are expected to calculate Approximate value (not exact value), so we can REPLACE the GIVEN NUMBERS by their NEAREST perfect places which makes the calculation easy.

We can write the given VALUES as:

1564.666 ≈ 1565

82.5091 ≈ 82.5

44.581 ≈ 44.6

1034.111 ≈ 1034

Now, the given expression:

1564.666 + 82.5091 × 44.581 – 1034.111 = ?

⇒ ? ≈ 1565 + 82.5 × 44.6 – 1034

⇒ ? ≈ 1565 + 3679.5 – 1034

⇒ ? ≈ 4210
196.

1). 302). None of these3). 254). 35

Answer»

135% of 480 + ? % of 320 = 728$

1.35 $× 480 + (?/100) × 320 = 728

648 + ? × 3.2 = 728

? × 3.2 = 80

? = 25

197.

3.2% of 500 × 2.5% of ? = 3201). 6502). 7003). 6004). 800

Answer»

Given expression,

3.2% of 500 × 2.5% of ? = 320

$(\begin{array}{L} \Rightarrow \LEFT( {\frac{{3.2}}{{100}} \times 500} \RIGHT) \times \left( {\frac{{2.5}}{{100}} \times ?} \right) = 320\\ \Rightarrow 16 \times \left( {\frac{{2.5}}{{100}} \times ?} \right) = 320\\ \Rightarrow \left( {\frac{{2.5}}{{100}} \times ?} \right) = \frac{{320}}{{16}}\\ \Rightarrow \left( {\frac{{2.5}}{{100}} \times ?} \right) = 20\\ \Rightarrow \;? = \frac{{20}}{{2.5}} \times 100 \end{array})$

⇒ ? = 800

198.

25 × 625 ÷ 125 = 500 × 22 ÷ ?1). 12). 233). 164). 4

Answer»

Follow these BODMAS RULES to solve the question

Step-1? The part of the equation containing 'Brackets' must be solved first, and in the bracket,

Step-2? Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3? Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved

Step-4? At last, the part of the equation that contains 'Addition' and 'Subtraction' should be solved.

⇒ 25 × 625 ÷ 125 = 500 × 22 ÷ ?

⇒ 52 × 54 ÷ 53 = 5 × 100 × 22 ÷ ?

⇒ 52 × 54 ÷ 53 = 5 × 25 × 4 × 22 ÷ ?

⇒ 52 × 54 ÷ 53 = 5 × 52 × 22 × 22 ÷ ?

⇒ 5(2 + 4 – 3) = 5(1 + 2) × 24 ÷ ?

⇒ 53 = 53 × 24 ÷ ?

⇒ ? = 24

⇒ ? = 16
199.

√7056 + 13 × 24 – 1157 ÷ 13 = ?1). 136.452). 123.853). 142.954). 307

Answer»

FOLLOW BODMAS rule to solve this question, as per the order given below,

Step-1: Parts of an equation enclosed in the ‘BRACKETS’ must be solved first

Step-2: Any mathematical ‘OF’ or ‘EXPONEMTS’ must be solved next

Step-3: Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated

Step-4: LAST but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated

Now, the given expression:

⇒ √7056 + 13 × 24 – 1157 ÷ 13 = ?

84 + 13 × 24 – 1157 ÷ 13 = ?

⇒ 84 + 13 × 24 – 89 = ?

⇒ 84 + 312 – 89 = ?

⇒ 84 + 312 – 89 = ?

⇒ 396 – 89 = ?

⇒ 307 = ?
200.

1). 7/32). 4/33). 5/34). 1/3

Answer»

Follow BODMAS rule to solve this question, as per the order given below,

Step-1: Parts of an equation enclosed in 'Brackets' must be solved FIRST, and in the BRACKET,

Step-2: Any mathematical 'Of' or 'Exponent' must be solved next,

Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated,

Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated.

Given expression is,

$(\BEGIN{array}{l} \frac{{\frac{1}{3} \times 24 \DIV 4}}{{\frac{1}{4} \times 30 \div 5}} = ?\\ \Rightarrow \frac{{\frac{1}{3} \times 6}}{{\frac{1}{4} \times 6}} = ?\\ \Rightarrow ? = \frac{4}{3} \end{array})$