InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
35.2 × 420/24 + 533.9 - 210.9 = X% of 85001). 172). 113). 15.54). 15 |
|
Answer» ⇒ 35.2 × 420/24 + 533.9 - 210.9 = X% of 8500 ⇒ 616 + 533.9 - 210.9 = X% of 8500 ⇒ 1149.9 - 210.9 = X% of 8500 ⇒ 939 = 85X ⇒ 939/85 = X ⇒ X = 11 (APPROX.) |
|
| 202. |
1). 165.452). 306.293). 152.234). 290.78 |
|
Answer» FOLLOW BODMAS RULES to solve the equation Step-1: The part of the equation containing 'Brackets' must be solved first, and in the bracket, Step-2: Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved Step-4: At last, the part of the equation that contains 'Addition' and 'Subtraction' should be solved. ⇒ 725.34 + 887.12 – (2 × ?) = 999.88 ⇒ 725.34 + 887.12 – 999.88 = 2 × ? ⇒ 1612.46 – 999.88 = 2 × ? ⇒ 612.58 = 2 × ? ∴ ? = 306.29 |
|
| 203. |
1). 3122). 4413). 4854). None of these |
|
Answer» $(\sqrt {\sqrt {44944} + \sqrt {52441} } = ?\; + \;6)$ $(\sqrt {212 + 229} = \;?\; + \;6)$ $(?\; + \;6 = \sqrt {441})$ ⇒ ? = 21 - 6 ⇒ ? = 15 |
|
| 204. |
1). 32). 93). 64). 8 |
|
Answer» $(? = \SQRT[5]{{{{\LEFT( {243} \right)}^2}}})$ ⇒ ? = (243)(2⁄5) ⇒ ? = (3 × 3 × 3 × 3 × 3)(2⁄5) ⇒ ? = (35)(2⁄5) ⇒ ? = 32 ∴ ? = 9 |
|
| 205. |
960 ÷ 2.4 × 3.5 + 275 = 25 × ?1). 352). 683). 454). 67 |
|
Answer» Follow these BODMAS rules to solve the question Step-1? The part of the EQUATION containing 'Brackets' must be solved first, and in the BRACKET, Step-2? Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3? Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved Step-4? At last, the part of the equation that contains 'Addition' and 'Subtraction' should be solved. 960 ÷ 2.4 × 3.5 + 275 = 25 × ? $( \Rightarrow {\rm{\;}}\frac{{960}}{{24}} \times 10 \times \frac{7}{2}\; + \;275\; = \;25 \times \;?)$ ⇒ 400 × 7/2 + 275 = 25 × ? ⇒ 1400 + 275 = 25 × ? ⇒ 1675 = 25 × ? ⇒ ? = 1675/25 ⇒ ? = 67 |
|
| 206. |
1). 1123092). 1229433). 1440984). 133057 |
|
Answer» 400.062 + 24.99 – 30.0093 + 2.0015 ⇒ 4002 + 25 +25 – 303 ⇒ 160000 + 25 + 32 – 27000 ⇒ 160057 – 27000 ⇒ 133057 ∴ ANSWER is 4 |
|
| 207. |
81% of 2310 – 34% of 1596 =?1). 1360.632). 1360.363). 1328.464). 1336.46 |
|
Answer» The given expression: $(= \LEFT( {\frac{{81}}{{100}} \times 2310} \right) - \left( {\frac{{34}}{{100}} \times 1596} \right))$ = (81 × 23.10) - (34 × 15.96) = 1871.1 – 542.64 = 1328.46 |
|
| 208. |
135.79 + 142.81 + 172.91 + 2 × ? = 750.971). 123.342). 145.733). 134.234). 149.73 |
|
Answer» Follow these BODMAS rules to solve the question Step-1? The part of the EQUATION containing 'Brackets' must be SOLVED first, and in the BRACKET, Step-2? Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3? Next, the parts of the equation that contain 'Division' and 'Multiplication' are solved Step-4? At last, the part of the equation that contains 'Addition' and 'Subtraction' should be solved. ⇒ 135.79 + 142.81 + 172.91 + 2 × ? = 750.97 ⇒ 2 × ? = 750.97 – (135.79 + 142.81 + 172.91) ⇒ 2 × ? = 750.97 – (451.51) ⇒ 2 × ? = 299.46 ⇒ ? = 149.73 |
|
| 209. |
{4 × [√324 + √1296]}1/3 =?1). 42). 123). 64). 8 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1-Parts of an equation ENCLOSED in 'Brackets' MUST be solved first, Step-2-Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. The given expression: {4 × [√324 + √1296]}1/3 = {4 × [√324 + √1296]}1/3 = {4 × [18 + 36]}1/3 = { 4 × 54}1/3 = (216)1/3 = 6 |
|
| 210. |
15083 + 25% of ? + 289 = 16385.51). 40442). 40543). 41544). 4104 |
|
Answer» Follow BODMAS rule to solve this question, as per the ORDER given below, Step-1: Parts of an equation enclosed in 'Brackets' must be SOLVED first, Step-2: Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4: Last but not LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, the given expression, 15083 + 25% of ? + 289 = 16385.5 ⇒25% of ? = 1013.5 ⇒? = 4054 |
|
| 211. |
223 + (12 × 146) ÷ (87 ÷ 29) = ?1). 7742). 8073). 8174). 762 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the order given below, Step-1- Parts of an equation enclosed in ‘Brackets’ must be SOLVED first, Step-2- Any mathematical ‘Of’ or ‘Exponent’ must be solved next, Step-3- Next, the parts of the equation that contain ‘Division’ and ‘Multiplication’ are calculated, Step-4- Last but not the least, the parts of the equation that contain ‘Addition’ and ‘SUBTRACTION’ should be calculated. Now, the given expression is, ⇒ 223 + (12 × 146) ÷ (87 ÷ 29) ⇒ 223 + 1752 ÷ 3 ⇒ 223 + 584 ⇒ ? = 807 |
|
| 212. |
24.98% of 119.98 – 74.93% of 60.07 = ?1). -152). -453). 304). 15 |
|
Answer» 24.98% of 119.98 – 74.93% of 60.07 = ? Take approximate values ⇒ 24.98 ≈ 25 ⇒ 119.98 ≈ 120 ⇒ 74.93 ≈ 75 ⇒ 60.07 ≈ 60 Putting APPROXIMATED values in the equation ⇒ (25/100) × 120 – (75/100) × 60 = ? ∴ ? = -15 |
|
| 213. |
[(75.81 – 12) ÷ 16] = (?)21). 32). 43). 54). 2 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, Step-1: Parts of an equation ENCLOSED in 'Brackets' MUST be solved first, and in the BRACKET, Step-2: Any mathematical 'Of' or 'Exponent' must be solved next, Step-3: Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4: Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, [(75.81 – 12) ÷ 16] = (?)2 Approximating to the CLOSEST integers ⇒ [(76 – 12) ÷ 16] = ?2 ⇒ [64 ÷ 16] = ?2 ⇒ x2 = 4 ∴ x = 2 |
|
| 214. |
199.99 - 99.89 ÷ 24.80 = 28.04 × ?1). 3.52). 283). 214). 7 |
|
Answer» GIVEN expression is, ⇒ 199.99 - 99.89 ÷ 24.80 = 28.04 × ? We can write the given values as: ⇒ 199.99 ≈ 200 and 99.89 ≈ 100 ⇒ 24.80 ≈ 25 and 28.04 ≈ 28 ⇒ 200 - 100 ÷ 25 = 28 × ? ⇒ 200 - 4 = 28 × ? ⇒ 196 = 28 × ? ⇒ ? = 196/28 ∴ ? ≈ 7 |
|
| 215. |
15949.80/X + 43.7% of 1400 - 363.9 = 17.2% of 95001). 14.52). 20.53). 11.54). 18.5 |
|
Answer» ⇒ 15949.80/X + 43.7% of 1400 - 363.9 = 17.2% of 9500 ⇒ 15949.80/X + 611.8 - 363.9 = 1634 ⇒ 15949.80/X + 247.9 = 1634 ⇒ 15949.80/X = 1634 - 247.9 ⇒ 15949.80/X = 1386.1 ⇒ 15949.80/1386.1 = X ⇒ X = 11.5 |
|
| 216. |
50.44 × 3.19 – 37.15 % of 300 = 24.26 + ?1). 252). 153). 104). 5 |
|
Answer» Follow BODMAS rule to solve this question, as per the ORDER given below, Step-1- Parts of an equation enclosed in 'Brackets' MUST be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not the LEAST, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given EXPRESSION, 50.44 × 3.19 – 37.15 % of 300 = 24.26 + ? We can also write values as: 50.44 ≈ 50, 3.19 ≈ 3, 37.15 ≈ 37, 24.26 ≈ 24 Given expression becomes, ⇒ 50 × 3 – 37 % of 300 = 24 + ? ⇒ 150 – 37/100 × 300 = 24 + ? ⇒ 150 – 111 = 24 + ? ⇒ 39 = 24 + ? ⇒ ? ≈ 15 |
|
| 217. |
3463 × 295 – 16511 = ? + 79831). 9970912). 8870713). 9890904). 899060 |
|
Answer» Follow BODMAS RULE to solve this QUESTION, as per the order given below, Step-1- Parts of an equation enclosed in 'Brackets' must be solved first, and in the bracket, the BODMAS rule must be followed, Step-2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are CALCULATED, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. 3463 × 295 – 16511 = ? + 7983 ⇒ 1021585 – 16511 = ? + 7983 ⇒ ? = 997091 |
|
| 218. |
1). 62252). 62753). 65254). 6557 |
|
Answer» GIVEN expression: 60% of 20% of (3/5)th of (?)=450 ⇒ (60/100) × (20/100) × (3/5) × ? = 450 ⇒ (3/5) × (1/5) × (3/5) × ? =450 ⇒ ? = 450 × (125/9) ⇒ ? = 50 × 125 ⇒ ? = 6250 Hence, the REQUIRED number in PLACE of question mark is 6250. |
|
| 219. |
780.059 + 49.937 × 30.079 - 59.591 = ?1). 26602). 50003). 12804). 2550 |
|
Answer» The given expression, 780.059 + 49.937 × 30.079 – 59.591 = ? We can WRITE the given values as, 780.059 ≈ 780, 49.937 ≈ 50, 30.079 ≈ 30 and 59.591 ≈ 60 Then, ⇒ 780 + 50 × 30 – 60 = ? ⇒ ? = 780 + 1500 – 60 ⇒ ? = 2280 – 60 ∴ ? ≈ 2220 |
|
| 220. |
1). 2.862). 3.43). 12.64). 13.1 |
|
Answer» $(\FRAC{{? + 2.8 + 5.6}}{{3.5 - 2.1}} = 15)$ ⇒? $({? + 8.4\over 1.4})$ = 15 ⇒ ? = 15 × 1.4 - 8.4 = 12.6 |
|
| 221. |
(8)3 ÷ (16)2 × 32 = (2)?-3 ÷ (2)21). 122). 183). 114). 10 |
|
Answer» GIVEN Expression is: (8)3 ÷ (16)2 × 32 = (2)?-3 ÷ (2)2 $(\begin{array}{l} \Rightarrow \frac{{{{({2^3})}^3}}}{{{{({2^4})}^2}}} \times {2^5} = \frac{{{2^{? - 3}}}}{{{2^2}}}\\ \Rightarrow \frac{{{2^9}}}{{{2^8}}} \times {2^5} = {2^{? - 5\;}} \end{array})$ ⇒ 26 = 2? – 5 Comparing powers from both the sides ⇒ 6 = ? – 5 ⇒ ? = 11 |
|
| 222. |
1). \(12\frac{3}{{17}}\)2). \(15\frac{3}{{34}}\)3). \(12\frac{{21}}{{34}}\)4). \(36\frac{8}{{17}}\) |
|
Answer» The given expression MAY be SIMPLIFIED as: $(\Rightarrow 4\frac{{16}}{{17}} \times 1\frac{{11}}{{16}} \div \frac{{21}}{{38}} = \frac{{84}}{{17}} \times \frac{{27}}{{16}} \times \frac{{38}}{{21}})$ $(= \frac{{86184}}{{5712}})$ $(= \frac{{513}}{{34}})$ $(= 15\frac{3}{{34}})$ |
|
| 223. |
1). 458.442). 684.963). 1524.24). 478.102 |
|
Answer» FOLLOW BODMAS RULE to solve this question, as per the order GIVEN below, Step-1-Parts of an EQUATION enclosed in 'Brackets' must be solved first, Step-2-Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, the given expression, 1002 ÷ 50 × 99 – 1299 =? ⇒ ? = 1002 ÷ 50 × 99 – 1299 ⇒ ? = 20.04 × 99 – 1299 ⇒ ? = 1983.96 – 1299 ⇒ ? = 684.96 Hence, the required answer is 684.96. |
|
| 224. |
115.72 ÷ 4.10 × 4.90 = 90.14% of 200 - ?1). 352). 193). 224). 26 |
|
Answer» Follow BODMAS RULE to solve this question, as per the order given below, Step-1- Parts of an EQUATION ENCLOSED in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 115.72 ÷ 4.10 × 4.90 = 90.14% of 200 - ? We can write the given values as : ⇒ 115.72 ≈ 116 and 4.10 ≈ 4 ⇒ 4.90 ≈ 5 and 90.14 ≈ 90 Then, ⇒ 116 ÷ 4 × 5 = 90% of 200 - ? ⇒ 116 ÷ 4 × 5 = (90/100) × 200 - ? ⇒ 29 × 5 = 90 × 2 - ? ⇒ 145 = 180 - ? ⇒ ? = 180 - 145 ∴ ? ≈ 35 |
|
| 225. |
1 - {1 + (a2 - 1)-1}-1 = ?1). \(\frac{1}{{{a^2}}}\)2). a23). \(- \frac{1}{{{a^2}}}\)4). –a2 |
|
Answer» Solve the given question, using FOLLOWING laws of indices, Laws of Indices, 1-: am × an = a{m + n} 2-: am ÷ an = a{m - n} 3-: [(am)n] = amn 4-: (a)1/m = $(\SQRT[m]{a})$ 5-: (a)-m = 1/am 6-: (a)(m/n) = $(\sqrt[n]{{{a^m}}})$ 7-: a0 = 1 ⇒ 1 - {1 + (a2 -1)-1}-1 $(\begin{array}{l} \Rightarrow 1 - {\left\{ {1 + \frac{1}{{{a^{2\;}} - 1}}} \right\}^{ - 1}}\\ \Rightarrow 1 - {\left\{ {\frac{{{a^2}}}{{{a^2} - 1}}} \right\}^{ - 1}}\\ \Rightarrow 1 - \left\{ {\frac{{{a^2}}}{{{a^2} - 1}}} \right\}^{ - 1}\\ \Rightarrow \frac{1}{{{a^2}}} \END{array})$ |
|
| 226. |
1). 4022). 460.83). 528.84). 252 |
|
Answer» Solution: The given EQUATION is: (64 ÷ 4) 32 - √296 + 34 × 2 ÷ 2 By APPLYING BODMAS rule, (In BODMAS rule, B stands for Brackets, O stands for Orders or pOwers, D stands for Division, M stands for Multiplication, A stands for Addition, S stands for Subtraction. For simplification, when we USE BODMAS rule, firstly OPEN the bracket, then resolve ORDER, after then division, multiplication, addition and then subtraction.) = 16 × 32 - √296 + 34 × 2 ÷ 2 = 16 × 32 - √296 + 34 × 1 = 512 – 17.20 +34 = 528.8 = ? |
|
| 227. |
28 × 104 ÷ (28 – 21 + 6) + 3 = ?1). 2272). 2043). 2244). 228 |
|
Answer» Follow BODMAS RULE to solve this QUESTION, as per the order GIVEN below, Step-1-Parts of an EQUATION enclosed in 'Brackets' must be solved first, Step-2-Any mathematical 'Of' or 'Exponent' must be solved next, Step-3-Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4-Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Now, the given expression, 28 × 104 ÷ (28 – 21 + 6) + 3 = ? ⇒ ? = 28 × 104 ÷ 13 + 3 ⇒ ? = 28 × 8 + 3 ⇒ ? = 227 |
|
| 228. |
121 ÷ (7/5 × 3/8 × 4/5) = ?1). 1622). 2883). 2084). 298 |
|
Answer» Follow BODMAS rule to SOLVE this question, as per the ORDER given below, Step-1- PARTS of an equation enclosed in 'Brackets' must be solved first, and in the bracket, Step-2- Any mathematical 'Of' or 'Exponent' must be solved next, Step-3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step-4- LAST but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, 121 ÷ (7/5 × 3/8 × 4/5) = ? ⇒ ? = 121 ÷ (21/50) ⇒ ? = 121 × 50/21 ⇒ ? = 6050/21 ∴ ? = 288.09 ≈ 288 |
|
| 229. |
12.21 + 12.12 + 121.2 + 21.12 + 21.21 + 1.121 = ?1). 188.9812). 18.8913). 188.8914). 81.981 |
|
Answer» This QUESTION, though EASY, could end up giving wrong ANSWERS due to haste The best policy to answer such questions is to group TOGETHER the terms with equivalent decimal point ⇒ (12.21 + 12.12 + 21.12 + 21.21) + 121.2 + 1.121 ⇒ 66.66 + 121.2 + 1.121 ⇒ 187.86 + 1.121 = 188.981 |
|
| 230. |
73570 ÷ 731 × 12.5 = ?1). 11962). 12853). 12584). 1169 |
|
Answer» In this type of question, we are expected to calculate APPROXIMATE value (not exact value), so we can replace the GIVEN numbers by their nearest perfect places which makes the CALCULATION easy. We can WRITE the given values as: 731 ≈ 730 12.5 ≈ 13 Now, given expression: 73570 ÷ 731 × 12.5 ≈ 73570 ÷ 730 × 12.5 ≈ 1259.8 ≈ 1258 |
|
| 231. |
1). 462). 283). 194). 29 |
|
Answer» $(\FRAC{5}{{27 - ?}} - \frac{1}{4} = \frac{3}{8})$ ⇒? $(\frac{3}{{8}} + \frac{1}{4} = \frac{5}{27\: -\:?})$ ⇒? ?$(\frac{5}{{27 - ?}} = \frac{5}{8})$ ⇒? 27 - ? = 8 ⇒? ? = 27 - 8 = 19 |
|
| 232. |
(59.10 × 4.93) + 15.34 = 49.88 × 3.17 + 32.08 × ?1). 132). 23). 94). 16 |
|
Answer» Given expression is, (59.10 × 4.93) + 15.34 = 49.88 × 3.17 + 32.08 × ? We can write the given VALUES as: 59.10 ≈ 59 and 4.93 ≈ 5 and 15.34 ≈ 15 49.88 ≈ 50 and 3.17 ≈ 3 and 32.08 ≈ 32 Then, ⇒ (59 × 5) + 15 = 50 × 3 + 32 × ? ⇒ 295 + 15 = 50 × 3 + 32× ? ⇒ 295 + 15 = 150 + 32 × ? ⇒ 310 = 150 + 32 × ? ⇒ 310 - 150 = 32 × ? ⇒ 160 = 32 × ? ⇒ ? ≈ 5 |
|
| 233. |
205 × 13 × ? = 16812.5 + 12502.51). 112). 143). 164). 22 |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the order given below, Step -1: Parts of an equation enclosed in the ‘BRACKETS’ must be solved first Step - 2: Any mathematical ‘OF’ or ‘EXPONENTS’ must be solved next Step - 3: Next the part of the equation that contains ‘DIVISION; and ‘MULTIPLICATION’ are calculated Step - 4: Last but not least, the parts of the equation that contains ‘ADDITION’ and ‘SUBTRACTION’ should be calculated Now, the given EXPRESSION: ⇒ 205 × 13 × ? = 16812.5 + 12502.5 ⇒ 2665 × ? = 29315 $(\Rightarrow {\rm{\;}}?\; = \;\frac{{29315}}{{2665}}\; = \;11)$ |
|
| 234. |
48% of 250 + 1050 ÷ 3 – √(?) = 4231). 22052). 22093). 22894). 2286 |
|
Answer» Given expression: ⇒ 48% of 250 + 1050 ÷ 3 – √(?) = 423 ⇒ (48/100) × 250 + 1050 ÷ 3 – √(?) = 423 ⇒ (48/100) × 250 + 350 – √(?) = 423 ⇒ 120 + 350 – √(?) = 423 ⇒ 470 – √(?) = 423 ⇒ √(?) = 470 – 423 ⇒ √(?) = 47 ⇒ ? = 2209 |
|
| 235. |
69.709 - 32.94 × 1.98 = 149.86 ÷ ?1). 392). 373). 424). 40 |
|
Answer» Given EXPRESSION is, ⇒ 69.709 - 32.94 × 1.98 = 149.86 ÷ ? We can WRITE the given VALUES as ⇒ 69.709 ≈ 70 and 32.94 ≈ 33 ⇒ 1.98 ≈ 2 and 149.86 ≈ 150 ⇒ 70 - 33 × 2 = 150 ÷ ? ⇒ 70 - 66 = 150 ÷ ? ⇒ 4 = 150 ÷ ? ⇒ ? = 150/4 ∴ ? ≈ 37 |
|
| 236. |
1). 92). 73). 54). 19 |
|
Answer» $(\begin{ARRAY}{l} \RIGHTARROW \sqrt[3]{{\left( {340 + \SURD 9} \right)}}\\ \Rightarrow \sqrt[3]{{\left( {340 + 3} \right)}}\\ \Rightarrow \sqrt[3]{{343}}\\\THEREFORE \sqrt[3]{{\left( {343 + \sqrt 9 } \right)}} = 7\end{array})$ |
|
| 238. |
49.99% of 800 + 35.001 % of 99.99 = ?1). 4352). 4053). 4064). 407 |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step - 1 - PARTS of an equation enclosed in 'Brackets' must be SOLVED first, and in the bracket, Step - 2 - Any mathematical 'Of' or 'Exponent' must be solved next, Step - 3 - Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step - 4 - Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ⇒ 49.99% of 800 + 35.001% of 99.99 = ? Approximating to the closest integers ⇒ 50% of 800 + 35% of 100 ⇒ 400 + 35 ⇒ 435 |
|
| 239. |
(81)1/2 × 34 = 27?1). 72). 43). 54). 2 |
|
Answer» 811/2 = 34 × ½ = 32 32 × 34 = 36 36 = 27? 36 = 33 × ? 6 = 3 × ? ? = 2 |
|
| 240. |
1). \(1\frac{{10}}{{13}}\)2). \(1\frac{9}{{23}}\)3). \(13\frac{7}{{26}}\)4). \(10\frac{1}{{13}}\) |
|
Answer» Given expression: $(4\frac{1}{2} + \left( {1 \div 2\frac{8}{9}} \right) - 3\frac{1}{{13}} = ?)$ $(\Rightarrow \;? = \frac{9}{2} + \left( {\frac{1}{{\frac{{26}}{9}}}} \right) - \frac{{40}}{{13}})$ $(\Rightarrow \;? = \frac{9}{2} + \frac{9}{{26}} - \frac{{40}}{{13}})$ $(\Rightarrow \frac{{117 + 9 - 80}}{{26}} = \frac{{46}}{{26}} = \;\frac{{23}}{{13}} = 1\frac{{10}}{{13}})$ |
|
| 241. |
143.9687 + 897.4534 + (8.893 × 8.893) = ?1). 10992). 14433). 11544). 1122 |
|
Answer» Solving the Brackets, 8.893 ≈ 9 (9 × 9) = 81 Solving Addition, 143.9687 ≈ 144 897.4534 ≈ 897 144 + 897 + 81 = 1122 ∴ 1122 should come in the place of QUESTION MARK. |
|
| 242. |
69.90 ÷ 2.15 + 35.20 = 59.79 ÷ ? + 39.911). 52). 13). 74). 2 |
|
Answer» Given EXPRESSION is, 69.90 ÷ 2.15 + 35.20 = 59.79 ÷ ? + 39.91 We can WRITE the given VALUES as: 69.90 ≈ 70 and 2.15 ≈ 2 35.20 ≈ 35 and 59.79 ≈ 60 and 39.91 ≈ 40 Then, ⇒ 70 ÷ 2 + 35 = 60 ÷ ? + 40 ⇒ 35 + 35 = 60 ÷ ? + 40 ⇒ 70 = 60 ÷ ? + 40 ⇒ 70 - 40 = 60 ÷ ? ⇒ 30 = 60 ÷ ? ⇒ ? = 60/30 ⇒ ? ≈ 2 |
|
| 243. |
660 × X + 495.85 - 60% of 9650 = 37.5% of 72001). 122). 183). 154). 20 |
|
Answer» ⇒ 660 × X + 495.85 - 60% of 9650 = 37.5% of 7200 ⇒ 660X + 495.85 - 5790 = 2700 ⇒ 660X + 495.85 = 2700 + 5790 ⇒ 660X = 8490 - 495.85 ⇒ X = 7994.15/660 ⇒ X = 12 (APPROX.) |
|
| 244. |
1). \(- \frac{{123}}{{325}}\)2). \(- \frac{{133}}{{325}}\)3). \(- \frac{{256}}{{650}}\)4). \(\frac{{256}}{{650}}\) |
|
Answer» $(\begin{array}{l} 3\FRAC{1}{{13}} - 4\frac{1}{2} - \left( {1 \div 2\frac{8}{9}} \right) + 1\frac{9}{{25}}\\ = \frac{{40}}{{13}} - \frac{9}{2} - \left( {1 \div \frac{{26}}{9}} \right) + \frac{{34}}{{25}}\\ = \frac{{40}}{{13}} - \frac{9}{2} - \left( {1 \times \frac{9}{{26}}} \right) + \frac{{34}}{{25}}\\ = \frac{{40}}{{13}} - \frac{9}{2} - \frac{9}{{26}} + \frac{{34}}{{25}}\\ = \frac{{40 \times 50 - 9 \times 325 - 9 \times 25 + 34 \times 26}}{{650}}\\ = \frac{{2000 - 2925 - 225 + 884}}{{650}}\\ = \frac{{2884 - 3150}}{{650}}\\ = - \frac{{266}}{{650}} = - \frac{{133}}{{325}} \end{array})$ |
|
| 245. |
? – 7/18 = 17/10 – ?1). \(\frac{{188}}{{90}}\)2). \(\frac{{188}}{{45}}\)3). \(\frac{{188}}{{360}}\)4). \(\frac{{188}}{{180}}\) |
|
Answer» Follow BODMAS rule to solve this question, as per the order given below, Step -1- Parts of an EQUATION enclosed in 'Brackets' must be solved FIRST, and in the bracket, Step -2- Any MATHEMATICAL 'Of' or 'Exponent' must be solved next, Step -3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step -4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, ? – 7/18 = 17/10 – ? ⇒ ? + ? = 17/10 + 7/18 ⇒ 2 × ? = [(17 × 9) + (7 × 5)]/ 90 ⇒ 2 × ? = (153 + 35) /90 ⇒ 2 × ? = 188/90 ∴ ? = 188/180 |
|
| 246. |
1). 208992). 208793). 208764). 20889 |
||||||||||||||
|
Answer» According to the BODMAS rule, the PRIORITY in which the OPERATIONS should be done is:
⇒ 54.92% of 601 + 66% of 889.979 × 34.905 = (?) Approximating the value to the nearest integer: ⇒ 55% × 600 + 66% × 890 × 35 = (?) ⇒ 55/100 × 600 + 66/100 × 890 × 35 = (?) (?) = 330 + 20559 (?) = 20889 |
|||||||||||||||
| 247. |
1). 119/122). 187/123). 191/114). 119/11 |
|
Answer» $(18\FRAC{2}{3} - 7\frac{1}{4} = ? + 1\frac{1}{2})$ $(\frac{{56}}{3} - \frac{{29}}{4} = ? + \frac{3}{2})$ $(\frac{{224 - 87}}{{12}} = ? + \frac{3}{2})$ $(\frac{{137}}{{12}} = ? + \frac{3}{2})$ $(? = \frac{{119}}{{12}})$ |
|
| 248. |
1). 452). 353). 404). 50 |
|
Answer» (80.0003% of 1601.73) + (75.123% of 1003.158) + 1000 - (50.82% of 3005.72) × 2.0007 Using BODMAS rule, ⇒ (80% of 1600) + (75% of 1000) + 1000 - (50% of 3000) × 2, ⇒ (80 × 16) + (75 × 10) + 1000 - (50 × 30) × 2, (SIMPLIFYING ‘brackets’) ⇒ 1280 + 750 + 1000 - 1500 × 2, ⇒ 3030 - 3000, ⇒ 30 ∴ ? = 30 |
|
| 249. |
A student has to secure a minimum 35% marks in to pass in an examination. If he gets 200 marks and fails by 10 marks, then the maximum in the examination are:1). 6002). 4503). 7804). 650 |
|
Answer» Let the MAXIMUM MARKS in the EXAMINATION are ‘x’. Now, according to the question, Minimum required marks = 35% of the total marks = 0.35x And, the student gets 200 marks and fails by 10 marks, it means he gets 10 marks less than PASSING marks. ⇒ 200 = 0.35x – 10 ⇒ 210 = 0.35x ⇒ x = 210/0.35 = 600. Hence, the maximum marks in the examination are 600. |
|
| 250. |
1). 22). 43). 444). 22 |
|
Answer» Given expression is, ⇒ (27.92% of 600) + (? × 1.99) = (8 × 15.79) + (31.94 × 4.11) $(\Rightarrow \frac{{28}}{{100}} \times 600 + \left( {? \times 1.99} \right) = \left( {8 \times 15.79} \right) + \left( {31.94 \times 4.11} \right))$ ⇒ 28 × 6 + (? × 2) = (8 × 16) + (32 × 4) ⇒ 168 + (? × 2) = 256 ⇒ ? × 2 = 88 ⇒ ? = 88/2 = 44 ⇒ ? = 44 |
|