InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
The simplest rationalising factor of 2√5 - √3 isA. 2√5 + 3B. 2√5 + C. √5 + √3D. √5 - √3 |
|
Answer» Simplest rationalizing factor of 2√5 - √3 = 1/(2√5 - √3) = 2√5 + √3 |
|
| 2. |
The simplest rationalising factor of √3+ √5 isA. √3 - 5B. 3 - √5C. √3 - √5D. √3 + √5 |
|
Answer» Simplest rationalizing factor of √3 +√5 1/(√3 +√5) = √3 - √5 |
|
| 3. |
Simplify:(√8 – √2) (√8 + √2) |
|
Answer» (√8 – √2 ) (√8 + √2) = (√8)2 – (√2)2 [(a+b)(a-b) = a2 - b2] = 8 - 2 = 6 |
|
| 4. |
Simplify each of the following:(i) \(\sqrt[3]{4}\) x \(\sqrt[3]{16}\)(ii) \(\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}\) |
|
Answer» (i) \(\sqrt[3]{4}\) x \(\sqrt[3]{16}\) = \(\sqrt[3]{4\times 16}\) = \(\sqrt[3]{64}\) = \(\sqrt[3]{4^3}\) = \((4^3)^\frac{1}{3}\) = 4 (ii) \(\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}\) = \(\sqrt[4]\frac{1250}{2}\) = \(\sqrt[4]\frac{625\times 2}{2}\) = \(\sqrt[4]{625}\) = \(\sqrt[4]{5^4}\) = (54)\(\frac{1}{4}\) = 5 |
|
| 5. |
Simplify:(3 + √3)(5 - √2) |
|
Answer» (3 + √3)(5- √2 ) = 15 – 3√2 + 5√3 – √6 |
|
| 6. |
Simplify:(3 + √3) (3 – √3) |
|
Answer» (3 + √3) (3 – √3) = (3)2 – (√3)2 [(a+b)(a-b) = a2 - b2] = 9 – 3 = 6 |
|
| 7. |
Simplify:(4 + √7) (3 + √2) |
|
Answer» = (4 + √7) (3 + √2) = 12 + 4√2 + 3√7 + √14 |
|
| 8. |
Simplify:(√5 – √2) (√5 + √2) |
|
Answer» (√5 – √2) (√5 + √2) = (√5)2 – (√2)2 [(a+b)(a-b) = a2 - b2] = 5 – 2 = 3 |
|
| 9. |
Simplify:(√3 + √7)2 |
|
Answer» (√3 + √7)2 = (√3)2 + (√7)2 + 2(√3)( √7) [(a + b)2 = a2 + b2 + 2ab] = 3 + 7 + 2√21 = 10 + 2√21 |
|
| 10. |
Simplify:(√5 – √3)2. |
|
Answer» (√5 – √3)2 = (√5)2 + (√3)2 – 2(√5)( √3) [(a – b)2 = a2 + b2 – 2ab] = 5 + 3 – 2√15 = 8 – 2√15 |
|
| 11. |
Simplify:(2√5 + 3√2)2 |
|
Answer» (2√5 + 3√2)2 = (2√5)2 + (3√2)2 + 2(2√5)(3√2) [(a + b)2 = a2 + b2 + 2ab] = 20 + 18 + 12√10 = 38 + 12√10 |
|
| 12. |
Show that:`1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5` |
|
Answer» LHS `1/(3-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5)+1/(sqrt5-2)` `(3+sqrt8)/(3^2-sqrt8^2)-(sqrt8+sqrt7)/(sqrt8^2-sqrt7^2)+(sqrt7+sqrt6)/(sqrt7^2-sqrt6^2)-(sqrt6+sqrt5)/(sqrt6^2-sqrt5^2)+(sqrt5+2)/(sqrt5-2^2)` `3+sqrt3-sqrt8-sqrt7+sqrt7+sqrt8-sqrt6-sqrt5+sqrt5+2` `5=RHS`. |
|
| 13. |
Simplify each of the following by rationalisingthe denominator;`1/(5+sqrt(2))`(ii) `(5+sqrt(6))/(5-sqrt(6))`(iii) `(7+3sqrt(5))/(7-3sqrt(5))`(iv) `(2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))` |
|
Answer» 1)`1/(5+sqrt2)=(5-sqrt2)/(5^2-sqrt2^2)=(5-sqrt2)/(5-4)=5-sqrt2` 2)`(5+sqrt6)/(5-sqrt6)=(5+sqrt6)^2/(5^2-sqrt6^2)` `=(25+6+10sqrt6)/(25-6)=(31+10sqrt6)/19` 3)`(7+3sqrt5)/(7-3sqrt5)=(7+3sqrt5)^2/(7^2-(3sqrt5)^2)` `=(49+45+14sqrt5)/(49-45)=(94+14sqrt5)/4`. |
|
| 14. |
If both `a`and `b`are rational numbers, find the values of `a`and `b`in each of the following equalities :`(sqrt(3)-1)/(sqrt(3)+1)=a+bsqrt(3)`(ii) `(3+sqrt(7))/(3-sqrt(7))=a+bsqrt(7)``(5+2sqrt(3))/(7+4sqrt(3))=a+bsqrt(3)`(iv) `(5+sqrt(3))/(7-4sqrt(3))=47a+sqrt(3)b``(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))=a+bsqrt(15)`(iv) `(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=1-bsqrt(3)` |
|
Answer» `=(sqrt3-1)/(sqrt3+1)*(sqrt3-1)/(sqrt3-1)` `=(sqrt3-1)^2/(sqrt3^2-1^2)` `=(sqrt3^2+1^2-2sqrt3)/(3-1)` `=(4-2sqrt3)/2` `2-1sqrt3` `a=2,b=-1`. |
|
| 15. |
If x + √15 = 4, then x + \(\frac{1}{x}\) = A. 2B. 4C. 8D. 1 |
|
Answer» Given x +√15 = 4 x = 4 - √15 \(\frac{1}{x}\) = 1/(4 - √15) = (4 + √15) / 16 -15 = 4 + √15 So, x + \(\frac{1}{x}\) = 4 - √15 + 4+√15 = 8 |
|
| 16. |
If x = 7+4√3 and xy = 1, then = \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\)A. 64B. 134C. 194D. \(\frac{1}{49}\) |
|
Answer» Given, x = 7 + 4√3 , xy = 1 Y = \(\frac{1}{x}\) = \(\frac{1}{7}\)+ 4√3 = 7 - 4√3 Y2 = \(\frac{1}{x^2}\) = 49 + 48 - 56√3 = 97 - 56√3 Similarly, x = \(\frac{1}{y}\) = x2 = \(\frac{1}{y^2}\) = ( 7 + 4√3)2 = 49 + 48 + 56√3 = 97+ 56√3 So, \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\) = 97 + 56√3 + 97 – 56√3 = 194 |
|
| 17. |
If x = \(\sqrt[3]{2+\sqrt3}\), then x3 + \(\frac{1}{x^3}\) =A. 2B. 4C. 8D. 9 |
|
Answer» Given x = \(\sqrt[3]{2+\sqrt3}\) = x3 = 2 + √3 Similarly, \(\frac{1}{x^3}\) = 2 - √3 X3 + \(\frac{1}{x^3}\) = 2 +√3 + 2 - √3 = 4. |
|
| 18. |
If x = √2 – 1, then write the value of \(\frac{1}{x}\). |
|
Answer» \(x = \sqrt2-1\) \(\frac{1}{x} = \frac{1}{(\sqrt2-1)}\) Rationalising denominator, we have \(= \frac{1}{(\sqrt2-1)} \) x \(\frac {(\sqrt2+1)}{(\sqrt2+1)}\) \(= \frac{(\sqrt2+1)}{(2-1)}\) \(= \sqrt2+1\) |
|
| 19. |
Rationales the denominator and simplify:(i) \(\frac{{\sqrt3 - \sqrt2}}{\sqrt3 + \sqrt2}\)(ii) \(\frac{5+2\sqrt3}{7+4\sqrt3}\)(iii) \(\frac{1+\sqrt2}{3-2\sqrt2}\)(iv) \(\frac{2\sqrt6-\sqrt5}{3\sqrt5-2\sqrt6}\)(v) \(\frac{4\sqrt3+5\sqrt2}{\sqrt{48}+\sqrt{18}}\)(vi) \(\frac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\) |
|
Answer» (i) Multiply by √3 - √2 both numerator and denominator. \(\frac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}\) \(= {(\sqrt3-\sqrt2)(\sqrt3-\sqrt2)\over (\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}\) \(= {(\sqrt3-\sqrt2)^2\over3-2}\) \(=\frac {3-2\sqrt3\sqrt2+2}{1}\) \(= 5-2\sqrt6\) (ii) Multiply by 7 - 4√3 both numerator and denominator. \(\frac{5+2\sqrt3}{7+4\sqrt3}\) \(= \frac{(5+2\sqrt3)(7-4\sqrt3)} {(7+4\sqrt3)(7-4\sqrt3)}\) \(= \frac{(5+2\sqrt3)(7-4\sqrt3)} {49-48}\) \(= 36-20\sqrt3 + 14\sqrt3 - 24\) \(= 11-6\sqrt3\) (iii) Multiply by 3+2√2 both numerator and denominator. \(\frac{1+\sqrt2}{3-2\sqrt2}\) \(= \frac{(1+\sqrt2)(3+2\sqrt2)}{(3-2\sqrt2)(3+2\sqrt2)}\) \(= \frac{(1+\sqrt2)(3+2\sqrt2)}{9-8}\) \(= 3 +2\sqrt2 + 3\sqrt2 + 4\) \(= 7 + 5\sqrt2\) (iv) Multiply by 3√5 + 2√6 both numerator and denominator. \(\frac{2\sqrt6-\sqrt5}{3\sqrt5-2\sqrt6}\) \(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{(3\sqrt5-2\sqrt6)(3\sqrt5+2\sqrt6)}\) \(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{45-24}\) \(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{21}\) \(= \frac{6\sqrt{30}+24-15-2\sqrt{30}}{21}\) \(= \frac{4\sqrt{30}+9}{21}\) (v) Multiply by √48 - √18 both numerator and denominator. \(\frac{4\sqrt3+5\sqrt2}{\sqrt{48}+\sqrt{18}}\) \(= \frac{(4\sqrt3+5\sqrt2)(\sqrt{48}-\sqrt{18})}{(\sqrt{48}+\sqrt{18})(\sqrt{48}-\sqrt{18})}\) \(= \frac{(4\sqrt3+5\sqrt2)(\sqrt{48}-\sqrt{18})}{48-18}\) \(= \frac{48-12\sqrt6+20\sqrt6-30}{30}\) \(=\frac{18+8\sqrt6}{30}\) \(=\frac{9+4\sqrt6}{15}\) (vi) Multiply by 2√2 - 3√3 both numerator and denominator. \(\frac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\) \(= \frac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{(2\sqrt2+3\sqrt3)(2\sqrt2-3\sqrt3)}\) \(= \frac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{8-27}\) \(=\frac{(4\sqrt6-2\sqrt10)-(18+3\sqrt15)}{-19}\) \(= \frac{(18-4\sqrt6+2\sqrt10-3\sqrt15)}{19}\) |
|
| 20. |
If \(\frac{\sqrt3-1}{\sqrt3+1}\) = x + y √3, find the values of x and y. |
|
Answer» Given, \(\frac{\sqrt3-1}{\sqrt3+1}\) = x + y√3 = \(\frac{\sqrt3-1}{\sqrt3+1}\) x \(\frac{\sqrt3-1}{\sqrt3-1}\) = \(\frac{(\sqrt3-1)(\sqrt3-1)}{3-1}\)= \(\frac{4-2\sqrt3}{2}\) = 2 - √3 So, x = 2, y = -1 |
|
| 21. |
Simplify: \(\sqrt{3+2\sqrt2}\) |
|
Answer» \(\sqrt{3+2\sqrt2}\) \(= \sqrt{2+1+2\sqrt2}\) \(= \sqrt{(\sqrt2)^2 + (1)^2 + 2 \times \sqrt2 \times 1}\) \(= \sqrt{(\sqrt2+1)^2}\) \(= \sqrt2+1\) |
|
| 22. |
Write the value of (2 + √3) (2 - √3). |
|
Answer» (2 +√3)(2 -√3) = (2)2 - (√3)2 [(a + b)(a - b) = a2 – b2] = 4 – 3 = 1. |
|
| 23. |
\(\sqrt[5]6\) x \(\sqrt[5]6\) is equal toA. \(\sqrt[5]36\)B. \(\sqrt[5]{6\times 0}\)C. \(\sqrt[5]6\)D. \(\sqrt[5]12\) |
|
Answer» \(\sqrt[5]{6}\) × \(\sqrt[5]{6}\) = (6)\(\frac{1}{5}\) × (6)\(\frac{1}{5}\) = (36)\(\frac{1}{5}\) = \(\sqrt[5]{36}\) |
|
| 24. |
√10 x √15 is equal toA. 5√6B. 6√5C. √30D. √25 |
|
Answer» √10 × √15 =(√5×√2) × (√5×√3) = 5 (√6) |
|
| 25. |
Write the value of (2 + √3) (2 – √3). |
|
Answer» (2 + √3) (2 – √3) = (2)2 – (√3)2 [(a + b)(a – b) = a2 – b2] = 4 – 3 = 1 |
|
| 26. |
If a = √2 +1, then find the value of \(a - \frac{1}{a}\). |
|
Answer» Given: a = √2 + 1 \(\frac{1}{a} = \frac{1}{(\sqrt2+1)}\) \(= \frac{1}{(\sqrt2+1)}\) x \(\frac{(\sqrt2-1)}{(\sqrt2-1)}\) \(= \frac{(\sqrt2-1)}{((\sqrt2)^2 - (1)^2)}\) \(= \frac{(\sqrt2-1)}{1}\) \(= \sqrt2-1\) Now, \(a - \frac{1}{a}\) = (√2 + 1) – (√2 – 1) = √2 + 1 - √2 + 1 = 2 |
|
| 27. |
If x = 2 + √3, find the value of \(x + \frac{1}{x}\). |
|
Answer» Given: x = 2 + √3 \(\frac{1}{a} = \frac{1}{2+\sqrt3}\) \(= \frac{1}{2+\sqrt3}\) x \(\frac{2-\sqrt3}{2-\sqrt3}\) \(= \frac{(2-\sqrt3)}{((2)^2 - (\sqrt3)^2)}\) \(= \frac{(2-\sqrt3)}{(4-3)}\) \(= (2-\sqrt3)\) Now, \(x + \frac{1}{x}\) = (2 + √3) + (2 – √3) = 2 + √3 + 2 – √3 = 4 |
|
| 28. |
Write the rationalisation factor of 7 – 3√5. |
|
Answer» Rationalisation factor of 7 – 3√5 is 7 + 3√5. |
|
| 29. |
Write the rationalisation factor of √5 – 2. |
|
Answer» Rationalisation factor of √5 – 2 is √5 + 2. |
|
| 30. |
The rationalisation factor of 2 + √3 isA. 2 - √3B. 2 + √3C. √2 - 3 D. √3 - 2 |
|
Answer» Rationalisation factor of 2 +√3 = \(\frac{1}{2}\) +√3 = 2 -√3 |
|
| 31. |
If \(\sqrt{13-a\sqrt{10}}\) = √8 + √5, then a = A. - 5B. - 6C. - 4D. - 2 |
|
Answer» √(13 - a√10) =√8 +√5 Squaring both side,.. = 13 – a√10 = 8 + 5 + 2 ×√8 ×√5 = 13 – a√10 = 13 + 2√40 = - a√10 = 4√10 = a = - 4 |
|
| 32. |
\(\frac{1}{\sqrt9-\sqrt8}\) is equal toA. 3 + 2√2B. \(\frac{1}{3+2\sqrt2}\)C. 3 - 2√2D. \(\frac{3}{2}\) - √2 |
|
Answer» \(\frac{1}{\sqrt9-\sqrt8}\) = \(\frac{1}{\sqrt9-\sqrt8}\) × \(\frac{\sqrt9 + \sqrt8}{\sqrt9+\sqrt8}\) = √9 + √8 = 3 + 2√2 |
|
| 33. |
The value of \(\sqrt{3-2\sqrt2}\) isA. \(\sqrt3\) - \(\sqrt2\)B. \(\sqrt3\) + \(\sqrt2\)C. \(\sqrt5\) + \(\sqrt6\)D. none of these |
|
Answer» \(\sqrt{3-2\sqrt2}\) √(√2)2+ 12 – 2 ×√2×1) = √(√2-1)2 = √2 – 1. |
|
| 34. |
Simplify the following expressions:(i) (4 + \(\sqrt7\)) (3 + \(\sqrt2\))(ii) (3 + \(\sqrt3\)) (5 - \(\sqrt2\))(iii) (\(\sqrt5\) - 2)(\(\sqrt3\) - \(\sqrt5\)) |
|
Answer» (i) (4 + \(\sqrt7\))(3 + \(\sqrt2\)) = 4 x 3 + 4 x \(\sqrt2\) + \(\sqrt7\) x 3 + \(\sqrt7\) x \(\sqrt2\) = 12 + 4\(\sqrt2\) + 3\(\sqrt7\) + \(\sqrt14\) (ii) (3 + \(\sqrt3\))(5 - \(\sqrt2\)) = 3 x 5 + 3 x (-\(\sqrt2\)) + \(\sqrt3\) x 5 + \(\sqrt3\) x (-\(\sqrt2\)) = 15 - 3\(\sqrt2\) + 5\(\sqrt3\) - \(\sqrt3\) x 2 = 15 - 3\(\sqrt2\) + 5\(\sqrt3\) - \(\sqrt6\) (iii) (\(\sqrt5\) - 2)(\(\sqrt3\) - \(\sqrt5\)) = \(\sqrt5\) x \(\sqrt3\) + \(\sqrt5\) x (-\(\sqrt5\)) + (-2) x \(\sqrt3\) +(-2) x (-\(\sqrt5\)) = \(\sqrt5\) x 3 - \(\sqrt5\) x 5 - 2\(\sqrt3\) + 2\(\sqrt5\) = \(\sqrt15\) - \(\sqrt{5^2}\) - 2\(\sqrt3\) + 2\(\sqrt5\) = \(\sqrt15\) - 5 - 2\(\sqrt3\) + 2\(\sqrt5\) |
|
| 35. |
Simplify the following expressions:(i)`(11+sqrt(11))(11-sqrt(11))`(ii) `(5+sqrt(7))(5-sqrt(7))`(iii)`(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2))`(iiii)`(sqrt(7)-3)(sqrt(7)+3)` |
|
Answer» 1)`(11+sqrt11)(11-sqrt11)` `11^2-(sqrt11)^2` `121-11=110` 2)`(5+sqrt7)(5-sqrt7)` `5^2-(sqrt7)^2=25-7=18` 3)`(sqrt8-sqrt2)(sqrt8+sqrt2)` `sqrt8^2-sqrt2^2=8-2=6` 4)`(sqrt7-3)(sqrt7+3)` `sqrt7^2-3^2=7-9=-2`. |
|
| 36. |
Simplify.\(\sqrt{3-2\sqrt2}\) |
|
Answer» \(\sqrt{3-2\sqrt2}\) = \(\sqrt{(\sqrt{2})^2+(1)^2}\) - \(2\times \sqrt{2}+1\) = \(\sqrt{(\sqrt2-1)^2}\) = √2 - 1. |
|
| 37. |
Simplify:(11 + √11) (11 – √11) |
|
Answer» (11 + √11) (11 – √11) [(a + b)(a - b) = a2 – b2 ] = 112 – (√11)2 = 121 – 11 = 110 |
|