Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

The simplest rationalising factor of 2√5 - √3 isA. 2√5 + 3B. 2√5 + C. √5 + √3D. √5 - √3

Answer»

Simplest rationalizing factor of 2√5 - √3

= 1/(2√5 - √3)

= 2√5 + √3

2.

The simplest rationalising factor of √3+ √5 isA. √3 - 5B. 3 - √5C. √3 - √5D. √3 + √5

Answer»

Simplest rationalizing factor of √3 +√5

1/(√3 +√5) = √3 - √5

3.

Simplify:(√8 – √2) (√8 + √2)

Answer»

(√8 – √2 ) (√8 + √2) 

= (√8)2 – (√2)2  [(a+b)(a-b) = a2 - b2

= 8 - 2

= 6

4.

Simplify each of the following:(i) \(\sqrt[3]{4}\) x \(\sqrt[3]{16}\)(ii) \(\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}\)

Answer»

(i)  \(\sqrt[3]{4}\) x \(\sqrt[3]{16}\)

\(\sqrt[3]{4\times 16}\) = \(\sqrt[3]{64}\)

\(\sqrt[3]{4^3}\) = \((4^3)^\frac{1}{3}\) = 4

(ii) \(\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}\) = \(\sqrt[4]\frac{1250}{2}\)

\(\sqrt[4]\frac{625\times 2}{2}\) = \(\sqrt[4]{625}\)

\(\sqrt[4]{5^4}\) = (54)\(\frac{1}{4}\) = 5

5.

Simplify:(3 + √3)(5 - √2)

Answer»

(3 + √3)(5- √2 ) 

= 15 – 3√2 + 5√3 – √6

6.

Simplify:(3 + √3) (3 – √3)

Answer»

(3 + √3) (3 – √3) 

= (3)2 – (√3)2   [(a+b)(a-b) = a2 - b2

= 9 – 3 

= 6

7.

Simplify:(4 + √7) (3 + √2)

Answer»

= (4 + √7) (3 + √2)

= 12 + 4√2 + 3√7 + √14

8.

Simplify:(√5 – √2) (√5 + √2)

Answer»

(√5 – √2) (√5 + √2) 

= (√5)2 – (√2)2   [(a+b)(a-b) = a2 - b2

= 5 – 2 

= 3

9.

Simplify:(√3 + √7)2

Answer»

(√3 + √7)2 

= (√3)2 + (√7)2 + 2(√3)( √7)  [(a + b)2 = a2 + b2 + 2ab]

= 3 + 7 + 2√21 

= 10 + 2√21

10.

Simplify:(√5 – √3)2.

Answer»

(√5 – √3)2 

= (√5)2 + (√3)2 – 2(√5)( √3)  [(a – b)2 = a2 + b2 – 2ab]

= 5 + 3 – 2√15 

= 8 – 2√15

11.

Simplify:(2√5 + 3√2)2

Answer»

(2√5 + 3√2)2 

= (2√5)2 + (3√2)2 + 2(2√5)(3√2) [(a + b)2 = a2 + b2 + 2ab]

= 20 + 18 + 12√10 

= 38 + 12√10

12.

Show that:`1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5`

Answer» LHS
`1/(3-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5)+1/(sqrt5-2)`
`(3+sqrt8)/(3^2-sqrt8^2)-(sqrt8+sqrt7)/(sqrt8^2-sqrt7^2)+(sqrt7+sqrt6)/(sqrt7^2-sqrt6^2)-(sqrt6+sqrt5)/(sqrt6^2-sqrt5^2)+(sqrt5+2)/(sqrt5-2^2)`
`3+sqrt3-sqrt8-sqrt7+sqrt7+sqrt8-sqrt6-sqrt5+sqrt5+2`
`5=RHS`.
13.

Simplify each of the following by rationalisingthe denominator;`1/(5+sqrt(2))`(ii) `(5+sqrt(6))/(5-sqrt(6))`(iii) `(7+3sqrt(5))/(7-3sqrt(5))`(iv) `(2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))`

Answer» 1)`1/(5+sqrt2)=(5-sqrt2)/(5^2-sqrt2^2)=(5-sqrt2)/(5-4)=5-sqrt2`
2)`(5+sqrt6)/(5-sqrt6)=(5+sqrt6)^2/(5^2-sqrt6^2)`
`=(25+6+10sqrt6)/(25-6)=(31+10sqrt6)/19`
3)`(7+3sqrt5)/(7-3sqrt5)=(7+3sqrt5)^2/(7^2-(3sqrt5)^2)`
`=(49+45+14sqrt5)/(49-45)=(94+14sqrt5)/4`.
14.

If both `a`and `b`are rational numbers, find the values of `a`and `b`in each of the following equalities :`(sqrt(3)-1)/(sqrt(3)+1)=a+bsqrt(3)`(ii) `(3+sqrt(7))/(3-sqrt(7))=a+bsqrt(7)``(5+2sqrt(3))/(7+4sqrt(3))=a+bsqrt(3)`(iv) `(5+sqrt(3))/(7-4sqrt(3))=47a+sqrt(3)b``(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))=a+bsqrt(15)`(iv) `(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=1-bsqrt(3)`

Answer» `=(sqrt3-1)/(sqrt3+1)*(sqrt3-1)/(sqrt3-1)`
`=(sqrt3-1)^2/(sqrt3^2-1^2)`
`=(sqrt3^2+1^2-2sqrt3)/(3-1)`
`=(4-2sqrt3)/2`
`2-1sqrt3`
`a=2,b=-1`.
15.

If x + √15 = 4, then x + \(\frac{1}{x}\) = A. 2B. 4C. 8D. 1

Answer»

Given x +√15 = 4

x = 4 - √15

\(\frac{1}{x}\) = 1/(4 - √15) = (4 + √15) / 16 -15 = 4 + √15

So, x + \(\frac{1}{x}\) = 4 - √15 + 4+√15 = 8

16.

If x = 7+4√3 and xy = 1, then = \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\)A. 64B. 134C. 194D. \(\frac{1}{49}\)

Answer»

Given, x = 7 + 4√3 , xy = 1

Y = \(\frac{1}{x}\) = \(\frac{1}{7}\)+ 4√3 = 7 - 4√3

Y2 = \(\frac{1}{x^2}\) = 49 + 48 - 56√3 = 97 - 56√3

Similarly, x = \(\frac{1}{y}\)

= x2 = \(\frac{1}{y^2}\) = ( 7 + 4√3)2 = 49 + 48 + 56√3 = 97+ 56√3

So, \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\) = 97 + 56√3 + 97 – 56√3 = 194

17.

If x = \(\sqrt[3]{2+\sqrt3}\), then x3 + \(\frac{1}{x^3}\) =A. 2B. 4C. 8D. 9

Answer»

Given x = \(\sqrt[3]{2+\sqrt3}\)

= x3 = 2 + √3

Similarly, \(\frac{1}{x^3}\) = 2 - √3

X3 + \(\frac{1}{x^3}\) = 2 +√3 + 2 - √3 = 4.

18.

If x = √2 – 1, then write the value of \(\frac{1}{x}\).

Answer»

\(x = \sqrt2-1\)

\(\frac{1}{x} = \frac{1}{(\sqrt2-1)}\)

Rationalising denominator, we have

\(= \frac{1}{(\sqrt2-1)} \) x \(\frac {(\sqrt2+1)}{(\sqrt2+1)}\)

\(= \frac{(\sqrt2+1)}{(2-1)}\)

\(= \sqrt2+1\)

19.

Rationales the denominator and simplify:(i) \(\frac{{\sqrt3 - \sqrt2}}{\sqrt3 + \sqrt2}\)(ii) \(\frac{5+2\sqrt3}{7+4\sqrt3}\)(iii) \(\frac{1+\sqrt2}{3-2\sqrt2}\)(iv) \(\frac{2\sqrt6-\sqrt5}{3\sqrt5-2\sqrt6}\)(v) \(\frac{4\sqrt3+5\sqrt2}{\sqrt{48}+\sqrt{18}}\)(vi) \(\frac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\)

Answer»

(i) Multiply by √3 - √2 both numerator and denominator.

\(\frac{\sqrt3-\sqrt2}{\sqrt3+\sqrt2}\)

\(= {(\sqrt3-\sqrt2)(\sqrt3-\sqrt2)\over (\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}\)

\(= {(\sqrt3-\sqrt2)^2\over3-2}\)

\(=\frac {3-2\sqrt3\sqrt2+2}{1}\)

\(= 5-2\sqrt6\)

(ii)  Multiply by 7 - 4√3 both numerator and denominator.

 \(\frac{5+2\sqrt3}{7+4\sqrt3}\)

\(= \frac{(5+2\sqrt3)(7-4\sqrt3)} {(7+4\sqrt3)(7-4\sqrt3)}\)

\(= \frac{(5+2\sqrt3)(7-4\sqrt3)} {49-48}\)

\(= 36-20\sqrt3 + 14\sqrt3 - 24\)

\(= 11-6\sqrt3\)

(iii) Multiply by 3+2√2 both numerator and denominator.

 \(\frac{1+\sqrt2}{3-2\sqrt2}\)

\(= \frac{(1+\sqrt2)(3+2\sqrt2)}{(3-2\sqrt2)(3+2\sqrt2)}\)

 \(= \frac{(1+\sqrt2)(3+2\sqrt2)}{9-8}\)

\(= 3 +2\sqrt2 + 3\sqrt2 + 4\)

\(= 7 + 5\sqrt2\)

(iv) Multiply by 3√5 + 2√6 both numerator and denominator.

 \(\frac{2\sqrt6-\sqrt5}{3\sqrt5-2\sqrt6}\)

\(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{(3\sqrt5-2\sqrt6)(3\sqrt5+2\sqrt6)}\)

\(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{45-24}\)

\(= \frac{(2\sqrt6 - \sqrt5)(3\sqrt5+2\sqrt6)}{21}\)

\(= \frac{6\sqrt{30}+24-15-2\sqrt{30}}{21}\)

\(= \frac{4\sqrt{30}+9}{21}\)

(v) Multiply by √48 - √18 both numerator and denominator.

 \(\frac{4\sqrt3+5\sqrt2}{\sqrt{48}+\sqrt{18}}\)

\(= \frac{(4\sqrt3+5\sqrt2)(\sqrt{48}-\sqrt{18})}{(\sqrt{48}+\sqrt{18})(\sqrt{48}-\sqrt{18})}\)

\(= \frac{(4\sqrt3+5\sqrt2)(\sqrt{48}-\sqrt{18})}{48-18}\)

\(= \frac{48-12\sqrt6+20\sqrt6-30}{30}\)

\(=\frac{18+8\sqrt6}{30}\)

\(=\frac{9+4\sqrt6}{15}\)

(vi) Multiply by 2√2 - 3√3 both numerator and denominator.

 \(\frac{2\sqrt3-\sqrt5}{2\sqrt2+3\sqrt3}\)

\(= \frac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{(2\sqrt2+3\sqrt3)(2\sqrt2-3\sqrt3)}\)

\(= \frac{(2\sqrt3-\sqrt5)(2\sqrt2-3\sqrt3)}{8-27}\)

\(=\frac{(4\sqrt6-2\sqrt10)-(18+3\sqrt15)}{-19}\)

\(= \frac{(18-4\sqrt6+2\sqrt10-3\sqrt15)}{19}\)

20.

If \(\frac{\sqrt3-1}{\sqrt3+1}\) = x + y √3, find the values of x and y.

Answer»

Given, \(\frac{\sqrt3-1}{\sqrt3+1}\) = x + y√3

\(\frac{\sqrt3-1}{\sqrt3+1}\) x \(\frac{\sqrt3-1}{\sqrt3-1}\) = \(\frac{(\sqrt3-1)(\sqrt3-1)}{3-1}\)\(\frac{4-2\sqrt3}{2}\) = 2 - √3

So, x = 2, y = -1

21.

Simplify: \(\sqrt{3+2\sqrt2}\)

Answer»

\(\sqrt{3+2\sqrt2}\)

\(= \sqrt{2+1+2\sqrt2}\)

\(= \sqrt{(\sqrt2)^2 + (1)^2 + 2 \times \sqrt2 \times 1}\)

\(= \sqrt{(\sqrt2+1)^2}\)

\(= \sqrt2+1\)

22.

Write the value of (2 + √3) (2 - √3).

Answer»

(2 +√3)(2 -√3)

= (2)2 - (√3)2 [(a + b)(a - b) = a2 – b2]

= 4 – 3 = 1.

23.

\(\sqrt[5]6\) x \(\sqrt[5]6\) is equal toA. \(\sqrt[5]36\)B. \(\sqrt[5]{6\times 0}\)C. \(\sqrt[5]6\)D. \(\sqrt[5]12\)

Answer»

\(\sqrt[5]{6}\) × \(\sqrt[5]{6}\) = (6)\(\frac{1}{5}\) × (6)\(\frac{1}{5}\) = (36)\(\frac{1}{5}\)

= \(\sqrt[5]{36}\)

24.

√10 x √15 is equal toA. 5√6B. 6√5C. √30D. √25

Answer»

√10 × √15 =(√5×√2) × (√5×√3)

= 5 (√6)

25.

Write the value of (2 + √3) (2 – √3).

Answer»

(2 + √3) (2 – √3)

= (2)2 – (√3)2 [(a + b)(a – b) = a2 – b2]

= 4 – 3

= 1

26.

If a = √2 +1, then find the value of \(a - \frac{1}{a}\).

Answer»

Given: a = √2 + 1

\(\frac{1}{a} = \frac{1}{(\sqrt2+1)}\)

\(= \frac{1}{(\sqrt2+1)}\) x \(\frac{(\sqrt2-1)}{(\sqrt2-1)}\)

\(= \frac{(\sqrt2-1)}{((\sqrt2)^2 - (1)^2)}\)

\(= \frac{(\sqrt2-1)}{1}\)

\(= \sqrt2-1\)

Now,

\(a - \frac{1}{a}\) = (√2 + 1) – (√2 – 1) 

= √2 + 1 - √2 + 1

= 2

27.

If x = 2 + √3, find the value of \(x + \frac{1}{x}\).

Answer»

Given: x = 2 + √3

\(\frac{1}{a} = \frac{1}{2+\sqrt3}\)

\(= \frac{1}{2+\sqrt3}\) x \(\frac{2-\sqrt3}{2-\sqrt3}\)

\(= \frac{(2-\sqrt3)}{((2)^2 - (\sqrt3)^2)}\)

\(= \frac{(2-\sqrt3)}{(4-3)}\)

\(= (2-\sqrt3)\)

Now,

\(x + \frac{1}{x}\) = (2 + √3) + (2 – √3)

= 2 + √3 + 2 – √3

= 4

28.

Write the rationalisation factor of 7 – 3√5.

Answer»

Rationalisation factor of 7 – 3√5 is 7 + 3√5.

29.

Write the rationalisation factor of √5 – 2.

Answer»

Rationalisation factor of √5 – 2 is √5 + 2.

30.

The rationalisation factor of 2 + √3 isA. 2 - √3B. 2 + √3C. √2 - 3 D. √3 - 2

Answer»

Rationalisation factor of 2 +√3 = \(\frac{1}{2}\) +√3 = 2 -√3

31.

If \(\sqrt{13-a\sqrt{10}}\) = √8 + √5, then a = A. - 5B. - 6C. - 4D. - 2

Answer»

√(13 - a√10) =√8 +√5

Squaring both side,..

= 13 – a√10 = 8 + 5 + 2 ×√8 ×√5

= 13 – a√10 = 13 + 2√40

= - a√10 = 4√10

= a = - 4

32.

\(\frac{1}{\sqrt9-\sqrt8}\) is equal toA. 3 + 2√2B. \(\frac{1}{3+2\sqrt2}\)C. 3 - 2√2D. \(\frac{3}{2}\) - √2

Answer»

\(\frac{1}{\sqrt9-\sqrt8}\)

= \(\frac{1}{\sqrt9-\sqrt8}\) × \(\frac{\sqrt9 + \sqrt8}{\sqrt9+\sqrt8}\)

= √9 + √8 = 3 + 2√2

33.

The value of \(\sqrt{3-2\sqrt2}\) isA. \(\sqrt3\) - \(\sqrt2\)B. \(\sqrt3\) + \(\sqrt2\)C. \(\sqrt5\) + \(\sqrt6\)D. none of these

Answer»

\(\sqrt{3-2\sqrt2}\)

(try to break the terms in form of (a+b)2 or (a – b )2)

√(√2)2+ 12 – 2 ×√2×1) = √(√2-1)2 = √2 – 1.

34.

Simplify the following expressions:(i) (4 + \(\sqrt7\)) (3 + \(\sqrt2\))(ii) (3 + \(\sqrt3\)) (5 - \(\sqrt2\))(iii) (\(\sqrt5\) - 2)(\(\sqrt3\) - \(\sqrt5\))

Answer»

(i) (4 + \(\sqrt7\))(3 + \(\sqrt2\))

= 4 x 3 + 4 x \(\sqrt2\)\(\sqrt7\) x 3 + \(\sqrt7\)\(\sqrt2\)

= 12 + 4\(\sqrt2\) + 3\(\sqrt7\)\(\sqrt14\)

(ii) (3 + \(\sqrt3\))(5 - \(\sqrt2\))

= 3 x 5 + 3 x (-\(\sqrt2\)) + \(\sqrt3\) x 5 + \(\sqrt3\) x (-\(\sqrt2\))

= 15 - 3\(\sqrt2\) + 5\(\sqrt3\)\(\sqrt3\) x 2

= 15 - 3\(\sqrt2\)  + 5\(\sqrt3\)\(\sqrt6\)

(iii) (\(\sqrt5\) - 2)(\(\sqrt3\) - \(\sqrt5\))

\(\sqrt5\)\(\sqrt3\)\(\sqrt5\) x (-\(\sqrt5\)) + (-2) x \(\sqrt3\) +(-2) x (-\(\sqrt5\))

\(\sqrt5\) x 3 - \(\sqrt5\) x 5 - 2\(\sqrt3\) + 2\(\sqrt5\)

\(\sqrt15\)\(\sqrt{5^2}\) - 2\(\sqrt3\) + 2\(\sqrt5\)

\(\sqrt15\) - 5 - 2\(\sqrt3\) + 2\(\sqrt5\)

35.

Simplify the following expressions:(i)`(11+sqrt(11))(11-sqrt(11))`(ii) `(5+sqrt(7))(5-sqrt(7))`(iii)`(sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2))`(iiii)`(sqrt(7)-3)(sqrt(7)+3)`

Answer» 1)`(11+sqrt11)(11-sqrt11)`
`11^2-(sqrt11)^2`
`121-11=110`
2)`(5+sqrt7)(5-sqrt7)`
`5^2-(sqrt7)^2=25-7=18`
3)`(sqrt8-sqrt2)(sqrt8+sqrt2)`
`sqrt8^2-sqrt2^2=8-2=6`
4)`(sqrt7-3)(sqrt7+3)`
`sqrt7^2-3^2=7-9=-2`.
36.

Simplify.\(\sqrt{3-2\sqrt2}\)

Answer»

\(\sqrt{3-2\sqrt2}\) 

= \(\sqrt{(\sqrt{2})^2+(1)^2}\) - \(2\times \sqrt{2}+1\) 

= \(\sqrt{(\sqrt2-1)^2}\) 

= √2 - 1.

37.

Simplify:(11 + √11) (11 – √11)

Answer»

(11 + √11) (11 – √11) [(a + b)(a - b) = a2 – b2 ]

= 112 – (√11)2 

= 121 – 11 

= 110